Lecture 3
Recall:
Thm (well-Ordering): If x is a nonemply subsec of IN, $\min (x)$ exists.

Thm (Archime dean Propenty) $\forall a, b \in \mathbb{R}, a, b>0, \exists n \in \mathbb{A}$ s.t. $n a>b$ spoon

Thm (Dersity of \mathbb{Q} in \mathbb{R}):
$\forall a, b \in \mathbb{R}$ with $a<b, \exists q \in \mathbb{Q}$ s.t. $a<q<b$.

Def: Two nonempty sets X and Y have the same cardinality if there exists a bijection between them. We will write $|X|=|Y|$.

Def: For any $n \in \mathbb{N}$, write $\{\{\mid 1,3, \ldots, n$ bU $|=n| C 1=0$. possibly
Terminology: Given a set x

- finite: $|x| \in \mathbb{N} \cup\{0\}$ infinite: if not finite
- countable: $|\chi|=\left||N|\right.$ or $\chi_{\text {is -finite }}$ uncountable: not countable

The: Any subset of \mathbb{N}
Pl: Suppose $x \subseteq \mathbb{N}$. If x is Flite, the result is immediate.

Suppose X is infinite. Define $f: N \rightarrow X$ as follows:

$$
\begin{aligned}
& f(1)=\min (x) \\
& f(2)=\min (x \backslash\{f(1)\}) \\
& \vdots \\
& f(n)=\min (x \backslash\{f(1), f(2), \ldots f(n-1)\})
\end{aligned}
$$

By definition f is strictly increasing, $n<m \Leftrightarrow f(n)<f(m)$.

Thus f is injective.
Furthermore, for an $x \in X \subseteq \mathbb{N}$, there can be at most finitely
many $y \in X$ st. $y<X$. aton many $y \in X$ s.t. $y<x$. accost x
Thus $f(n)=x$ for some $n \leqslant x$.
Thus f is surjective.
Therefore $|X|=\mid(I N \mid$.

Cor: Any subset of a countable set is countable.

Pl: Suppose Y is countable and $X \subseteq Y$. If Y finite, so is X, hence the result holds. Suppose $|Y|=|\mathbb{N}|$. Then $\exists f: Y \rightarrow \mathbb{N}$ bijective. Since $f(X) \leq \mathbb{N}, f(X)$ is countable. Since $f: x \rightarrow f(x)$ is a bijection, $|x|=|f(x)|$, so is countable. $f(X)=\{f(x): x \in X\}$

Them: A nonempty set x is countable inf $\exists g f: N \rightarrow X$ that is surjective.

Pl:
Suppose χ is countate. If $|X|=|\mathbb{N}|, \exists f: \mathbb{N} \rightarrow X$ bijective, so the result holds.

Now, suppose $|\chi|=k$ for $k \in \mathbb{N}$. $x=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Let $f: \mathbb{N} \rightarrow x$ be $f(l)=x_{\min (l, k)}$. This is surjective, which gives the result.
Nan, assume $\exists f: \mathbb{N} \rightarrow X$ surjective. If X is finite, the result is immediate. Assume X is infinite.

Define $g: x \rightarrow \mathbb{N}$ by $g(x)=\min \left(f^{-1}\left(x x^{3}\right)\right)$
Note that g is infective since

$$
\begin{aligned}
& g(x)=g(y) \stackrel{m}{m i n}\left(f^{-1}\{x\}\right)=\min \left(f^{-1}\left\{y^{3}\right)\right. \\
& \Rightarrow f^{-1}(\{x\}) \cap f^{-1}\left(\left\{y^{\}}\right) \neq \varnothing\right. \\
& \begin{array}{l}
\Leftrightarrow \exists z \text { set. } f(z)=x \text { and } f(z)=y \\
\Rightarrow x=y
\end{array} \\
& \Rightarrow x=y
\end{aligned}
$$

Thus, g is surjective onto $g(x)$. Hence $|x|=\lg (x) \mid$. Since $g(x) \leq \mathbb{N}_{1}$ $g(x)$ is countable. Thus \mathcal{X} is countable.

Willveturn Assume $\chi \neq \varnothing$
$Q:$ If $\exists g: \chi \rightarrow \mathbb{N}$ that is infective, is x countable?

近
Q: If $\exists g: x \rightarrow \mathbb{N}$ that is infective, does there exist $f: \| N \rightarrow x$ that is surjective.
A: Yes!
Pf: Since $g: x \rightarrow g(x)$ is a bijection, $\forall y \in g(x)$ we-ingy define
Then $f: g(x) \rightarrow x$ is a bijection.
Fix $x_{0} \in X$ If $y \in \mathbb{N} \backslash g(x)$, let fly $)=x_{0}$.
Then $f: N \rightarrow X$ is surjective.
$\begin{aligned} & \text { Prop: } \forall \quad \forall d \in \mathbb{N}, \\ & \text { is countable. }\end{aligned} \mathbb{N}^{d}=\frac{\mathbb{N}_{\text {N }} \times \mathbb{N} \times \times \times \mathbb{N}}{\text { dimes }}$
Pop: : © is countable $\overline{\mathbb{R}}$
Def: Given $a, b \in\{-\infty\} \cup \mathbb{R} \cup\{+\infty\}$ ar interval (between a and b) is a setof the form:

- (a, b)
- $(a, b]$
- $[a, b)$
- $[a, b]$

$$
\varepsilon x:[-\infty,+\infty]=\overline{\mathbb{R}}
$$

Prop: For $a<b$, any interval between a and b is uncountable.
Def: A (real-valued) sequence is a function from \mathbb{N} into \mathbb{R}, written s_{n} for $n \in \mathbb{N}$.

Ohm: Let A_{1}, A_{2}, \ldots be a countable family of countable sets. Then Usn is countable.
If finitely many A_{1}, A_{2}, A_{k}, de line $A_{l}=A_{k}$ for will le NM with $l=$ Wi Pe: First, if $A_{n}=\varnothing \forall n \in \mathbb{N}$, A_{n} He result is mme climate, so we may assume $A_{n} \neq \varnothing$ for some $n \in \mathbb{N}$.

Next, if $A_{m}=\mathbb{C}$ for $m \neq n$, then we may redefine $A_{m}:=A_{n}$ without changing $\bigcup_{n=1}^{\infty} A_{n}$. Thus, we may assume that $A_{n} \neq \varnothing \quad \forall n \in \mathbb{N}$.

Since A_{n} is countable for all $n \in \mathbb{N}$, we may list the elements as $a_{1}^{(n)}, a_{2}^{(n)}, a_{3}^{(n)} \ldots<$ finite or infinite If $|A n|=k, k \in \mathbb{N}$, we define $a_{l}^{(n)}=a_{k}^{(n)} \quad \forall l \in \mathbb{N}, l>k$.
Define $f\left(l_{m}\right)=a_{l}^{(n)}$. Then $f: \mathbb{R} \times \mathbb{N} \rightarrow \bigcup_{n=1} A_{n}$ is surjective.

Since $\mathbb{N} \times \mathbb{N}$ is countable, $\exists a$ bijection $g: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$. Thus $g \circ f: \mathbb{N} \rightarrow \bigcup_{n=1}^{\infty} A_{n}$ is surjective.
Thus, $\bigcup_{n=1}^{\infty} A_{n}$ is countable.
Recall : Properties of Absolute Value
$\{x$ if $x \geq 0$
Def: For $x \in \mathbb{R},|x|=\left\{\begin{array}{cc}x & \text { if } x \geq 0 \\ -x & x<0\end{array}\right.$
The: For all $x, y, a \in \tilde{R}^{-a}, a>0$
(i) $|x|<a \Leftrightarrow-a^{5} x<a$
(ii) $x \leq|x|,-x \leq|x|$
(iii) $|x y|=|x||y|$
(iv) $|x+0| \leq|x| \otimes|y|$ triangleineg.

Ch 4: Sequences of Real Numbers
Section 10 Sequences
Ex:

- $a_{n}=\frac{1}{n},\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$
- $b_{1}=1, \quad b_{n}=\frac{b_{n-1}}{2}$

collection of points within distance ε from zero

Def: A sequence $a_{n} \frac{\text { converges }}{\exists N \in}$ to
$\overline{L \in \varnothing R}$ if, $\forall \varepsilon>0, \exists N \in A^{s}$ st.
$n \geq N$ ensures $\left|a_{n}-L\right|<\varepsilon$.
We call L the limit of a_{n} and write $\lim _{n \rightarrow \infty} a_{n}=\bar{L}$.
$\begin{aligned} \text { Recall: }|x-y|= & \text { distance between } \\ & x \text { and } y\end{aligned}$
 x and y

Def: A sequence that does not converge to any $L \in \mathbb{R}$ diverges.
$\varepsilon_{x}: a_{n}=\frac{n}{n+1},\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right.$
We will prove $\lim _{n \rightarrow \infty} a_{n}=1$. Fix arbitrary $\varepsilon>0$.
Scratchwork:

$$
\begin{aligned}
\left|a_{n}-1\right|<\varepsilon & \Leftrightarrow\left|\frac{n}{n+1}-| |<\varepsilon\right. \\
& \Leftrightarrow\left|\frac{n-(n+1)}{n+1}\right|<\varepsilon \\
& \Leftrightarrow\left|\frac{-1}{n+1}\right|<\varepsilon \\
& \Leftrightarrow \frac{n+1}{n+1}<\varepsilon \\
& \Leftrightarrow \frac{1}{\varepsilon}<n+1
\end{aligned}
$$

Choose $N>\frac{1}{\varepsilon}$. Then $n \geq N$, $n+1 \geq N>\frac{1}{\varepsilon}$, so by scratchwork above, $\left|a_{n}-1\right|<\varepsilon$.

Section II: Subsequences

