Lecture 5

- Office hours: today, 3:30-4:30pm (not tumericu, email questions)
- No class Wed; next class Mon Apr 22

Thy: The limit of a sequence is unique.
An equivalent deft of convergence..
Alt Dc: : A sequence $a_{n}$ converges to $L \in \mathbb{R}$ if, $\forall \varepsilon>0$, lan $-L \bar{l} \geq \varepsilon$ holds for at most finitely many

Remark:

- Sometimes we will consider sn that are only defined for $\frac{n \text { sufficiently large }}{\exists N \text { sit. } n 2 N}$

$$
\exists N \text { sit. } n \geq N \text {. }
$$

Its limit is still well-defired.

- We may modify finitely many elements in a sequence, and the limiting behavior does not change. whether it converges or diverges

11 Subsequences
Def: Given a sequence $s n$, it is...

- increasing in case $n \leqslant m \Rightarrow s n \leqslant s$
- Strictly increasing, incuse $n<m \Rightarrow S_{n}<5 m$
- decreasing, in case $n \leq m \Rightarrow s_{n} \geq s_{m}$
- Strictly decreasing, in case $n<m=\sin ^{7} 5 m$
- monotone, in cause either increasing or decreasing.
Def: Given a sequence $s n$, for arg strictly increasing sequence $n_{k}$ of natural numbers, a segrence of the form $S_{n_{k}}$ is a subsegrence of $s n$.

Informally, a subsequence is any infinite collection of elements from the orioninal sequence, listed in ordo

$$
\begin{aligned}
\varepsilon_{x}: s_{n} & =\left(0,-1,0, \ldots, \cos \left(\frac{n \pi}{2}\right), \ldots\right) \\
s_{n_{k}} & =\left(-1,1,-1,1, \ldots,(-1)^{k}, \ldots\right) \\
n_{k} & =(2,4,2,1, \ldots, 2 k, \ldots)
\end{aligned}
$$

Lemma: If $n_{k}$ is a strictly increasing sequence of natural numbers, then $n_{k} \geq k \quad \forall k \in \mathbb{N}$.

The: If a sequence sn converges to a imit $L \in \mathbb{R}$, then every subrguance also converges to $L$.

12 The Algebra of Limits
The (Limit of Sum is Sum of Limit): If $a_{n}$ and $b_{n}$ are convergent sequences, so is $a_{n}+b_{n}$ and

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} .
$$

Ohm: If $c \in \mathbb{R}$ and $a_{n}$ is a convergent sequence, so is can and $\lim _{n \rightarrow \infty}\left(a_{n}=c \lim _{x \rightarrow \infty} a_{n}\right.$.

$$
\begin{aligned}
\left|c a_{n}-c L\right|<\varepsilon & \Leftrightarrow|c|\left|a_{n}-L\right|<\varepsilon \\
& \Leftrightarrow\left|a_{n}-L\right|<\frac{\varepsilon}{|c|}
\end{aligned}
$$

Pf: If $c=0, c a_{n}$ is the constant sequence $(0,0,0, \ldots)$, and the result is immediate.

Fix $\varepsilon>0$.
Suppose $c \neq 0$. Since an converges, $\exists N$ st. $n \geq N$ ensues

$$
\left|a_{n}-L\right|<\frac{\dot{\varepsilon}}{|c|} \Leftrightarrow\left|c a_{n}-c L\right|<\varepsilon .
$$

Thus $\lim _{n \rightarrow \infty} c a_{n}=C L$.
Lemma: If $a_{n}$ and $b_{n}$ converge to 0 , then $a_{n} b_{n}$ converges to

$$
\begin{aligned}
\left|a_{n} b_{n}-0\right|<\varepsilon & \Leftrightarrow\left|a_{n} b_{n}\right|<\varepsilon \\
& \Leftrightarrow\left|a_{n}\right|\left|b_{n}\right|<\varepsilon
\end{aligned}
$$

Pf: Fix $\varepsilon>0$. Then $\exists N_{a}, N_{b}$ s.t. $R \geq N_{a} \Rightarrow\left|a_{n}\right|<1$;
$n \geq N_{b} \Rightarrow\left|b_{n}\right|<\varepsilon$.
Let $N=\max \left\{N_{a_{1}} N_{b}\right\}$. Then $n \geq N$ ensures

$$
\left|a_{n} b_{n}\right|=\left|a_{n}\right|\left|b_{n}\right| \leq 1 \cdot\left|b_{n}\right|<\varepsilon
$$

The (Limit of Product is Product of Lii) If $a_{n}$ and on converge, then so does $a_{n} b n$ and

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=\underbrace{\left(\lim _{n \rightarrow \infty} a_{n}\right.}_{L})(\underbrace{\lim _{n \rightarrow \infty} b_{n}}_{M}) .
$$

Pf: Note that

$$
{\underset{c}{\text { converging to... }} \begin{array}{c}
b_{n} \\
b_{n}
\end{array} \underbrace{\left(n_{n}-L\right)}_{0}(\underbrace{b_{n}-m}_{0})+\underbrace{a_{n} m}_{L m}+\underbrace{b_{n} L}_{L m} L-L m}_{-L m}^{-L M}
$$

... where we interpret the sequence $a_{n}-L=\left(a_{1}-L, a_{2}-L, a_{3}-L, \ldots\right)$

Note that $\lim _{n \rightarrow \infty} a_{n}-L=0$.
Since the limit of sum is sum of limits,
$\lim _{n \rightarrow \infty} a_{n} b_{n}=0+L M+L M-L M=\angle M$.
Lemma: Suppose $\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R} \backslash\{0\}$.
Then

- $a_{n} \neq 0$, for all butfinitelymany $n$
- $\frac{1}{\text { an }}$ converges
- $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{2}$.

Scratch:

$$
\begin{aligned}
\left|\frac{1}{a_{n}}-\frac{1}{L}\right|<\varepsilon & \Leftrightarrow\left|\frac{1-a_{n}}{\operatorname{Lann}}\right|<\varepsilon \\
& \Leftrightarrow \frac{L-a_{n} \mid}{1 a_{n} \mid}<\varepsilon \text { sit stick? } \\
& \Leftrightarrow\left|L-a_{n}\right|<\varepsilon| |\left|\frac{a n}{}\right| \\
& \Leftrightarrow\left|L-a_{n}\right|<\varepsilon|L| \frac{\mid L 1}{2}
\end{aligned}
$$

reverse $\Delta$ ineq

$$
|L| \tan |\overrightarrow{\leq}| a_{n}-L\left|<\frac{|L|}{2} \Rightarrow \frac{|L|}{2}<\left|a_{n}\right|\right.
$$



Pf: Fix $\varepsilon>0$. Since $a_{n}$ converges to $L \neq 0, \varepsilon|<| \frac{1 L 1}{2} \neq 0$, so $\exists N_{1}$ sit $n \geq N_{1}$ ensures $\left|a_{n}-L\right|<\frac{\varepsilon|L| L \mid}{2}$.

Furthermore, $\exists N_{2}$ s.t. $n \geq N_{2}$

$$
\text { ensures reverse }|L|-\left|a_{n}\right| \leq\left|a_{n}-L\right|<\frac{\mid L 1}{2}
$$

Thus, $\frac{121}{2}<\left|a_{n}\right|$. This shows $a_{n} \neq 0$, for all but finitely many $n$.
Furthermore, for $N=\max \left\{N_{1}, N_{2}\right\}$,
$n \geq N$ ensures

$$
\left|a_{n}-L\right|<\frac{\xi|L| L L}{2}<\varepsilon|L|\left|a_{n a}\right| \text {. }
$$

Thus, $\left.n \geq N^{2} \operatorname{ensures}_{\left|\frac{1}{a_{n}}-\frac{1}{L}\right|^{\prime \prime}}^{|l| a_{n}-i \mid} \right\rvert\,<\varepsilon$.

Cor: If $a_{n}$ and $b_{n}$ are convergent sequences and $\lim _{n \rightarrow \infty} b_{n} \neq 0$, then $\frac{a_{n}}{b n}$ converse and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$.

Ex: $\lim _{n \rightarrow \infty} \frac{2 n}{n+2}=\lim _{n \rightarrow \infty} \frac{2}{1+\frac{2}{n}}$

- Since $\frac{1}{n}$ converges to $0, \lim _{n \rightarrow \infty} \frac{2}{n}=0$
- Since limit of sum is sum of limits, $\lim _{n \rightarrow \infty} \left\lvert\,+\frac{2}{n}=1+0=1\right.$
- Since limit of reciprocal is reciperal of limit, $\lim _{n \rightarrow \infty} \frac{f}{1+2 / n}=\frac{1}{1}=1$.
- $\lim _{n \rightarrow \infty} 2 \cdot\left(\frac{1}{1+2 / n}\right)=2 \cdot 1=2$.

13 Bounded Sequences
Def: A sequence $a_{n}$ is

- bounded above if $\exists m \in \mathbb{R}$ sit.

$$
a_{n} \leq m \quad \forall n \in \mathbb{N}
$$

- bounded below if $\exists m \in \mathbb{R}$ st.
- bounded if it is bounded above and below

介

$$
-m \leq a_{n} \leq m
$$

if $\exists m \geq 0$ s.t. $\widetilde{\left|a_{n}\right| \leq m} \quad \forall n \in \mathbb{N}$.
The: Convergent sequences are bounded

Be: Suppose an converges to $L$.
Then $\exists \mathrm{N}$ st. $n \equiv \mathrm{~N}$ ensures

$$
\left|a_{n}-L\right|<|\Rightarrow| a_{n}|-|L|<|
$$

reverse $\Delta$

$$
\Leftrightarrow\left|a_{n}\right|<|<|+1
$$

Let $m=\max \left\{\left|a_{1},\left|a_{2}\right|, \ldots\right| a_{N-1}|,|L|+1\}\right.$.
Then $\operatorname{lan}_{n} \leqslant m \quad \forall n \in \mathbb{N}$.

