Lecture 6
-Solution posted to HW2, Q10
-Makeup lecture this Friday 3:30-4:45pm
12 The Algebra of Limits
The (Limit of Sum is Sum of Limit): If a_{n} and b_{n} are convergent sequences, so is $a_{n}+b_{n}$ and

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n} .
$$

The: If $c \in \mathbb{R}$ and a_{n} is a convergent sequence, so is $C a_{n}$ and $\operatorname{lon}_{n \rightarrow \infty} c_{n}=c{ }^{\prime} \lim _{n \rightarrow \infty} a_{n}$.

Thu (Limit of Product is Product of Lii) If a_{n} and on converge, then so does $a_{n} b_{n}$ and $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$.

Cor: If a_{n} and b_{n} are convergent sequences and $\left.\lim _{n \rightarrow \infty} b_{n} \not\right)_{0}$, then $\frac{a_{n}}{b n}$ converges and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$.

13 Bounded Sequences
Def: A sequence a_{n} is

- bounded above if $\exists m \in \mathbb{R}$ sit.

$$
a_{n} \leq m \quad \forall n \in \mathbb{N}
$$

- bounded below if $\exists m \in \mathbb{R}$ st.
- bounded if it is bounded above and below

介

$$
-m \leq a_{n} \leq m
$$

if $\exists m \geq 0$ s.t. $\widetilde{\left|a_{n}\right| \leq m} \quad \forall n \in \mathbb{N}$.
The: Convergent sequences are bounded
$\varepsilon x: n^{2}$

$$
\sin _{(-1)^{n}}(\pi n / 2)
$$

The: If a_{n} is bounded and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.

Scratch:

$$
\begin{aligned}
\left|a_{n} b_{n}-0\right|<\varepsilon & \Leftrightarrow\left|a_{n}\right|\left|b_{n}\right|<\varepsilon \\
& \Leftrightarrow|m| b_{n} \mid<\varepsilon \\
& \Leftrightarrow\left|b_{n}\right|<\varepsilon / m
\end{aligned}
$$

Pl: Fix $\varepsilon>0$. Since a_{n} is bounded

$$
\exists m \geq 0 \text { s.t. }\left|a_{n}\right| \leq m, \forall n \in \mathbb{N}
$$

'LOG $m>0$

Since $\lim _{n \rightarrow \infty} b_{n}=0, \exists N$ s.t. $n \geq N$ ensures $\left|b_{n}\right|<\varepsilon / m \Leftrightarrow m\left|b_{n}\right|<\varepsilon$. Thus $\left|a_{n} b_{n}-0\right|=\left|a_{n}\right|\left|b_{n}\right|<\varepsilon$. Hence $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.
14 Further Limit Theorems
The: Suppose a_{n}, b_{n} are convergent sequence with $a_{n} \leq b_{n}$ for all but finitely many $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} a_{n} \leqslant \lim _{n \rightarrow \infty} b_{n}$.
Be :HW4

Thy (Squeeze): Suppose $a_{n} \stackrel{\leq}{ } b_{n} \leq c_{n}$
for all but finitely many $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=\Delta \in \mathbb{R}$.
Then $\lim _{n \rightarrow \infty} b_{n}=L_{i j} C_{n}$
$a_{n}^{n}:$

15 Divergent Sequence
From now on, consider $a_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}$. resp. divergence The same definition of convergence applies to such seguances. to limit However, if an converges, $a_{n} \in \mathbb{R}$ goral but finitely
many $n \in \mathbb{N}$. many $n \in \mathbb{N}$.
Def: $\in \mathbb{N}$

- ard diverges to $+\infty$ if, $\forall m \in \mathbb{R}$, \exists Us.t. $n \geq$ N ensures $a_{n}>m^{\prime}$. We write $\lim _{n \rightarrow \infty} a_{n}=+\infty$.
- an diverges to $-\infty$ if, $\forall m \in \mathbb{R}$, $\exists N$ st. $n z N$ ensures $a_{n}<m$. We write $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Q : divergence to $\pm \infty \Rightarrow$ diverges?

Def: Given a sequence a_{n}, the limit exists if an converges or an diverges to $\pm \infty$.

$$
\mathbb{i i m}_{\lim _{n \rightarrow \infty} a_{n} \in \overline{\mathbb{R}} .}
$$

Thm (Squexge): Suppose $a_{n} \leq b_{n}$ for all but finitely many n and the limits exist.
Then $\lim _{n \rightarrow \infty} a_{n} \leqslant \lim _{n \rightarrow \infty} b_{n}$.
Pl: On HW4, you will show the result if both sequences converge.

If an clirerges to $-\infty$ or bn diverges to $+\infty$, the result is clearly true.
Suppose an diverges to $+\infty$. We will show bn diverges to $+\infty$. Fix $m \in \mathbb{R}$. $\exists N$ sit. $n \geq 0$ ensures $m<a_{n}$. Choose N^{\prime} so that $a_{n} \leq b_{n} \quad \forall n \geq N^{\prime}$. Let $N^{\prime \prime}=\max \{N, N\}$. Then $n \geq N$ "ensures $m<a_{n} \leq b n$. Thus $\lim _{n \rightarrow \infty} b_{n}=+\infty$.

It remains to show $\lim _{n \rightarrow \infty} b_{n}=-\infty$ $\Rightarrow \lim _{n \rightarrow \infty} a_{n}=-\infty$. See HW5.

16 Monotone Sequences and e
Recall:
increasing $a_{n} \leq a_{n+1}, \forall n \in \mathbb{N}$ decreasing $a_{n} \geq a_{n+1}, \forall n \in \mathbb{N}$ monotone, if either increasing or decreasing
Rok:
increasing sequences are bod below as long as $a_{1} \neq-\infty$
decreasing sequences are bold above, as long as $a_{1} \neq+\infty$.

The: All bounded monotone sequences converge.
Pf: Suppose a_{n} is bounded and increasing. Since a_{n} is bounded, $\left\{a_{n} \delta_{n} \in \mathbb{N}\right\}$ is bounded above, its supremum exists. Let $L=\sup \left\{a_{n}: n \in \mathbb{N}\right\}$

Fix $\varepsilon>0$. Since L is an upper bound, $L \geq a_{n} \quad \forall n \in \mathbb{N}$.

Since $L-\varepsilon<L, L-\varepsilon$ is not an upper bound, so $\exists \mathrm{N}$ sit. $a_{N}>L-\varepsilon$. Since a_{n} is increasing, $a_{n} \geq a_{N}>L-\varepsilon$ for all $n \geq N$.

Thus $n \geq N, L-\varepsilon<a_{n} \leq L<L+\varepsilon$ $\Rightarrow\left|a_{n}-L\right|<\varepsilon$.

Now, suppose a_{n} is hounded and decreasing. Then -an is bounded and increasing, so it converges to $L \in \mathbb{R}$.
Thus $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}(-1)\left(-a_{n}\right)=-L$

Ex'
Claim: If $|a|<1, \lim _{n \rightarrow \infty} a^{n}=0$.
Prof Claim:
If $a=0$, the result is immediate.
Suppose $0<a<1$.

1) a^{n} is decreasing (byinduction)
2) a^{n} is bounded since product of nonneg is nonney and decreasing
Thus, $\lim _{n \rightarrow \infty} a^{n}=L$.

Since a^{n+1} is a subseq of a^{n}

$$
L=\lim _{n \rightarrow \infty} a^{n+1}=\lim _{n \rightarrow \infty} a a^{n}=a L
$$

If $L \neq 0$, then $1=a$, which is a contradiction. Thus $2=0$.

$$
\text { Suppose }-1<a<0 \text {. }
$$

Then $\lim _{n \rightarrow \infty}(-a)^{n}=0$. Thus

$$
\lim _{n \rightarrow \infty} a^{n}=\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{1} \underbrace{(-a)^{n}}_{b d d}=0 .
$$

N $2 \rightarrow+$ Figure 1

N $\& \rightarrow$ Figure 1

