Lecture 6

- Solution posted to HW2, Q10
- Makeup lecture this Friday 3:30-4:45pm

12 The Algebra of Limits

Thm (Limit of Sum is Sum of Limit):
If a_n and b_n are convergent sequences, so is $a_n + b_n$ and
\[
\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n.
\]

Thm: If $c \in \mathbb{R}$ and a_n is a convergent sequence, so is ca_n and
\[
\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n.
\]
Thm (Limit of Product is Product of Limits)

If \(a_n \) and \(b_n \) converge, then so does \(a_n b_n \) and
\[
\lim_{n \to \infty} a_n b_n = (\lim_{n \to \infty} a_n)(\lim_{n \to \infty} b_n).
\]

Cor: If \(a_n \) and \(b_n \) are convergent sequences and \(\lim_{n \to \infty} b_n \neq 0 \), then \(\frac{a_n}{b_n} \) converges and
\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.
\]
Def: A sequence an is
• bounded above if \(\exists M \in \mathbb{R} \text{s.t.} \ an \leq m \ \forall n \in \mathbb{N} \)
• bounded below if \(\exists M \in \mathbb{R} \text{s.t.} \ an \geq m \ \forall n \in \mathbb{N} \)
• bounded if it is bounded above and below
 \[\exists m \leq an \leq M \]
if \(\exists M \geq 0 \text{s.t.} \ |an| \leq M \ \forall n \in \mathbb{N} \).

Thm: Convergent sequences are bounded.
Ex: \(n^2 \sin(\pi n/2) (-1)^n \)

Thm: If \(a_n \) is bounded and
\[\lim_{n \to \infty} b_n = 0, \]
then \(\lim_{n \to \infty} a_n b_n = 0. \)

Scratch:
\[|a_n b_n - 0| < \epsilon \iff |a_n||b_n| < \epsilon \]
\[\iff M|b_n| < \epsilon \]
\[\iff |b_n| < \frac{\epsilon}{M} \]

Pf: Fix \(\epsilon > 0 \). Since \(a_n \) is bounded
\(\exists M \geq 0 \) s.t. \(|a_n| \leq M \), \(\forall n \in \mathbb{N} \)
\[\text{wlog } M > 0 \]
Since \(\lim_{n \to \infty} b_n = 0 \), \(\exists N \) s.t. \(n \geq N \) ensures \(|b_n| < \frac{1}{m} \Leftrightarrow M |b_n| < \varepsilon \). Thus \(|a_n b_n - 0| = |a_n| |b_n| < \varepsilon \). Hence \(\lim_{n \to \infty} a_n b_n = 0 \).

Further Limit Theorems

Thm: Suppose \(a_n, b_n \) are convergent sequences with \(a_n \leq b_n \) for all but finitely many \(n \leq N \). Then \(\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n \).

Ref.: HW4
Thm (Squeeze): Suppose
\[a_n \leq b_n \leq c_n \]
for all but finitely many \(n \in \mathbb{N} \) and
\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L \in \mathbb{R} \].

Then
\[\lim_{n \to \infty} b_n = L \]
15 Divergent Sequences

From now on, consider $a_n: \mathbb{N} \to \mathbb{R}$. The same definition of convergence applies to such sequences. However, if a_n converges, $a_n \in \mathbb{R}$ for all but finitely many $n \in \mathbb{N}$.

Def: $\forall n \in \mathbb{N}$

- a_n diverges to $+\infty$ if, $\forall M \in \mathbb{R}, \exists N \in \mathbb{N}$ s.t. $n \geq N$ ensures $a_n > M$.

We write $\lim_{n \to \infty} a_n = +\infty$.
\(\begin{align*}
&\text{an diverges to } -\infty \text{ if, } \forall M \in \mathbb{R}, \\
&\exists N \text{ s.t. } n \geq N \text{ ensured } a_n < M. \\
&\text{We write } \lim_{n \to \infty} a_n = -\infty.
\end{align*} \)

Q: divergence to \(\pm \infty \Rightarrow \text{diverges?} \)
Def: Given a sequence \(a_n \), the limit exists if \(a_n \) converges or \(a_n \) diverges to \(\pm \infty \).

\[
\lim_{n \to \infty} a_n \in \mathbb{R}.
\]

Thm (Squeeze): Suppose \(a_n \leq b_n \) for all but finitely many \(n \) and the limits exist. Then \(\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n \).

Pf: On HW4, you will show the result if both sequences converge.
If a_n diverges to $-\infty$ or b_n diverges to $+\infty$, the result is clearly true.

Suppose a_n diverges to $+\infty$. We will show b_n diverges to $+\infty$.

Fix $M \in \mathbb{R}$. $\exists N \text{ s.t. } n \geq N$ ensured $M < a_n$. Choose N' so that $a_n \leq b_n$ $\forall n \geq N'$.

Let $N'' = \max\{N, N'\}$. Then $n \geq N''$ ensured $M < a_n \leq b_n$.

Thus, $\lim_{n \to \infty} b_n = +\infty$.

It remains to show $\lim_{n \to \infty} b_n = -\infty$.

$\implies \lim_{n \to \infty} b_n = -\infty$. See HW5.
Recall:
increasing \(a_n \leq a_{n+1} \), \(\forall n \in \mathbb{N} \)
decreasing \(a_n \geq a_{n+1} \), \(\forall n \in \mathbb{N} \)
monotone if either increasing or decreasing

Remark:
increasing sequences are bold below as long as \(a_1 \neq -\infty \)
decreasing sequences are bold above as long as \(a_1 \neq +\infty \).
Thm: All bounded monotone sequences converge.

Proof: Suppose \(a_n \) is bounded and increasing. Since \(a_n \) is bounded, \(\{a_n : n \in \mathbb{N}\} \) is bounded above, its supremum exists. Let \(L = \sup \{a_n : n \in \mathbb{N}\} \).

Fix \(\varepsilon > 0 \). Since \(L \) is an upper bound, \(L \geq a_n \) for all \(n \in \mathbb{N} \).
Since \[L - \varepsilon < L, \quad L - \varepsilon \text{ is not an upper bound, so } \exists N \text{ s.t. } a_N > L - \varepsilon. \quad \text{Since } a_n \text{ is increasing, } a_n \geq a_N > L - \varepsilon \quad \text{for all } n \geq N. \]

Thus \[n \geq N, \quad L - \varepsilon < a_n \leq L < L + \varepsilon \]
\[\Rightarrow |a_n - L| < \varepsilon. \]

Now, suppose \(a_n \) is bounded and decreasing. Then \(-a_n \) is bounded and increasing, so it converges to \(\pm \infty \).

Thus \[\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-1)(-a_n) = -L. \]
Ex

Claim: If \(|a| < 1\), \(\lim_{n \to \infty} a^n = 0\).

Proof of Claim:

If \(a = 0\), the result is immediate.

Suppose \(0 < a < 1\).

1) \(a^n\) is decreasing (by induction)
2) \(a^n\) is bounded, since product of nonneg and decreasing.

Thus, \(\lim_{n \to \infty} a^n = 0\).
Since \(a^{n+1} \) is a subseq of \(a^n \)
\[
L = \lim_{n \to \infty} a^{n+1} = \lim_{n \to \infty} a a^n = a L.
\]

If \(L \neq 0 \), then \(1 = \alpha \), which is a contradiction. Thus \(L = 0 \).

Suppose \(-1 < \alpha < 0 \).
Then \(\lim_{n \to \infty} (-\alpha)^n = 0 \). Thus
\[
\lim_{n \to \infty} a^n = \lim_{n \to \infty} (-1)^n (-\alpha)^n = 0. \quad \square
\]