Lecture 9
Solution to HW3, Q7 posted Midterm 1 on Mon, May 6th

CGI: For an: $N \rightarrow \overline{\mathbb{R}}$ monotone, $\lim _{n \rightarrow \infty} a_{n}$ exists.

17 Real Exponents
Idea: For any $a>0$, define a^{x} as $\lim _{n \rightarrow \infty} a^{r_{n}}$ where $r_{n} / \mathbb{N} \rightarrow \mathbb{Q}$ satisfying ${ }^{n \rightarrow \infty} r_{n}>x$.
The: $\forall x \in \mathbb{R}, \exists r_{n}: \mathbb{N} \rightarrow \mathbb{Q}$ st. $r n^{\lambda} x$.

Lemma: Suppose $a>1, x \in \mathbb{R}$ and $r_{n}, s_{n}: \mathbb{N} \rightarrow \mathbb{Q}$ sit. $r_{n} 7 x$ sn $\sin _{x}$. Then $\lim _{n \rightarrow \infty} a^{r n}=\lim _{n \rightarrow \infty} a^{s n}$.
note: result clearly holds when $a=1$.
Def: For any $a \geq 1, x \in \mathbb{R}$, define

$$
a^{x}=\lim _{n \rightarrow \infty} a^{n}
$$

where $r_{n}: \mathbb{N} \rightarrow \mathbb{Q}$ satisfies $r_{n} T_{x}$.
For any $0<a<1, x \in \mathbb{R}$, define

$$
a^{x}=\left(\frac{1}{a}\right)^{-x} .
$$

The:
For all $a, b \in \mathbb{R}, x>0$
(i) $x^{a+b}=x^{a} x^{b}$
(ii) $x^{a}=\left(\frac{1}{x}\right)^{-a}$

$$
\begin{aligned}
& \text { (iii) }\left(x y^{a}=x^{a} y^{a}\right. \\
& \text { (iv) }\left(x^{a}\right)^{b} x^{a b}
\end{aligned}
$$

(vi) If $0<x<y_{3} a>0$, then $x^{a}<y^{a}$ (v) If $x>1$ ard $a<b$, then $x^{a<x}$.

Rok:
Suppose (v) holds for $0<a<b$. So $x>1 \Rightarrow x^{a}<x^{b} \Rightarrow x^{-b}<x^{-a}$ Thus $-b<-a$ ensure $x^{-b}<x^{-a}$.

Pf; We will show (i). Recall that we already have shown the result for ($a, b \in \mathbb{Q}$. Now, suppo\& $a, b \in \mathbb{R}$. Choose $r_{n}, s_{n}: \mathbb{N} \rightarrow Q$ s.t. $r_{n} フ a, s_{n} \nearrow b$.

Hence $r_{n}+s_{n} \tau a+b$.
By definition of real exponents,
for $x \geq 1$, for $x \geq 1$,

$$
\begin{aligned}
x^{a+h}=\lim _{n \rightarrow \infty} x^{r_{n}+s_{n}} & =\lim _{n \rightarrow \infty} x^{r_{n}} x^{s_{n}} \\
& =x^{a} x^{b}
\end{aligned}
$$

For $0<x<1$, we have $\frac{1}{x}>1$, so

$$
x^{a+b}=\left(\frac{1}{x}\right)^{-a-b}=\left(\frac{1}{x}\right)^{-a}\left(\frac{1}{x}\right)^{-b}=x^{a} x^{b} .
$$

by previous case
18 The Bolzano-Weierstrass Thu
Recall: For $s_{n}: \mid N \rightarrow \mathbb{R}, \begin{aligned} & \iota_{\text {consider }}^{s_{n}: N} \rightarrow \overline{R_{j}}\end{aligned}$ convergent \Rightarrow bounded $s_{n}=(-\infty, 1,1,1,-)$
bouncled and monotone \Rightarrow convergent
the limit of a segrence $a_{n}: N \rightarrow \bar{R}$

$$
\stackrel{\text { exists }}{\Leftrightarrow}\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R} \\
\begin{array}{l}
n \rightarrow \infty \\
n \rightarrow \infty \\
n \rightarrow \infty \\
n \rightarrow \infty \\
n
\end{array} \\
a_{n}=-\infty
\end{array}\right.
$$

the sequence convelgesto L "

Ohm: Every sequence $s_{n}: \mathbb{N} \rightarrow \overline{\mathbb{R}}$ has a monotone subsequence.
Q1: We will say that the $n^{\text {th }}$ element of a sequence is dominant if it is greater than every element
that follows, that is
s_{n} is dominant if $s_{n}>S_{m}$ $\forall m>n$.

Case 1 Suppose s_{n} has infinitely
many dominant elements many dominant elements.
Define $s n_{k}$ to be the subregnance af dominant elements.
then $S_{n_{k}}>S_{n_{k+1}} \quad \forall k \in \mathbb{N}$, so $s_{n k}$ is a decreasing subsequence, hence monotone.
Case 2 Suppose s_{n} has finitely
many dominant elements. many dominant elements'

- Choose n_{1} so that $s_{n_{1}}$ is beyond all dominants alts
- Since $s_{n_{1}}$ is not dominant, $\exists n_{2}$ sit. $S_{n_{2}} \geq S_{n_{1}}$.
- Assume we have chosen $s_{n_{k}}$ not dominant with $s_{n_{k}} \geqslant s_{n_{k-1}}$.
- Since $s_{n_{k}}$ not dominant, So n_{k+1} so that $s_{n_{k+1}} \geq s_{n_{k}}$ and $s_{n_{k+1}}$ not dominant.

Thus, we have found a sub req. that is increasing, hence monotone.

Tm (Bolzemo-Weierstrass): Every
bounded sequence has acnvatsule bounded sequence has acrivgtsubseq.

P\&: This follows immediately from prev tho.

Last important type of sequence...
19 The Cauchy Criterion
Def: $a_{n}: \mathbb{N} \rightarrow \mathbb{R}$ is a Cauchy
sequence if, $\forall \varepsilon>0, \exists$ sequence if, $\forall \varepsilon>0, \exists$
$N \varepsilon \mathbb{N} s t . m, n \geq N$ ensures $\left|a_{n}-a_{m}\right|<\varepsilon$.

A convergent sequence "bunches up" around Cts limit. \rightarrow need to know A Gaucher sequence "bunches up" around itself. \rightarrow don't need to know limit

The: All convergent real valued sequences are Cauchy.
QQ: Assume $a_{n}: \mathbb{N} \rightarrow \mathbb{R}$ converges *) some $L \in \mathbb{R}$. Fix $\varepsilon>0$ arbitrate. $\exists N$ s.t. $n \geq N$ ensures $\left|a_{n}-L\right|<\frac{\varepsilon}{2}$.

Then $m, n \geq N$,

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & =\left|a_{m}-L+L-a_{n}\right| \\
& \leq\left|a_{m}-L\right|+\left|L-a_{n}\right| \\
& <\varepsilon \varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

Suprisingly, the converse is true.

This is another way to express the fact that \mathbb{R} is Q "continues" with no "gaps."
The: All real-valued Cauchy sequences are convergent.
Pf: Let $a_{n}: N \rightarrow \mathbb{R}$ be Cauchy.
Claim: a_{n} is bounded.
Given $\varepsilon=1, \exists N$ s.t. $n m \geq N$ ensues $\left|a_{m}-a_{n}\right|<1$. Thus $n \geq N$ ensures $\left|a_{n}\right|=\left|a_{n}-a_{N}+a_{N}\right|<1+\left|a_{N}\right|$.

Hence $\forall n \in \mathbb{N}$,

$$
\left|a_{n}\right| \leq \max \left\{\left|a_{1}\right|, \ldots,\left|a_{N-1}\right|, 1+\left|a_{N}\right|\right\} .
$$

By Bolgano-Weierstrass, there is a subseq $a_{n_{k}}$ that converges to some $L \in \mathbb{R}$.

Fix $\varepsilon>0$. Since a_{n} is Cauchy, $\exists N$ sit. $m, n \geq N$ ensures

$$
\left|a_{m}-a_{n}\right|<\varepsilon / 2 .
$$

Since $a_{n k}$ converges to $L, \exists N^{\prime}$ sit. $k \geq N$ 'ensures

$$
\left|a_{n_{k}}-L\right|<\varepsilon / 2 \text {. }
$$

Thus, choose K suff large s.t. $K \geq N^{\prime}$ and $n_{k} \geq N$, strictly increasing sequence of natural \#s.
we have, $\forall n \geq N$,

$$
\begin{aligned}
\left|a_{n}-L\right| & =\left|a_{n}-a_{n_{K}}+a_{n_{K}}-L\right| \\
& \leq\left|a_{n}-a_{n K}\right|+\left|a_{n_{K}}-L\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon
\end{aligned}
$$

Rok: Why don't we define what it noleans for an extended real-valued seq. to be Cauchy?
We've just shown that, for a real valued sequence, convergent \Leftrightarrow Cauchy.
Issues: $+\infty-(+\infty)=\ddot{i}$, Cauchy \nexists anu $g+$

30 Definition of the Limit of a Function

Def: Given $x \leq \mathbb{R}, a \in \mathbb{R}, a$ is if $\forall \delta>0, \exists x \in$ point of x if $\forall \delta>0, \exists x \in \chi$ s.t.

$$
\varepsilon_{x}: \begin{aligned}
& x=\{q \in \mathbb{Q}: q>0\}, \overbrace{a=0}^{o<a n d} \\
& X=\left\{\frac{q_{1}}{n}: n \in \mathbb{N}\right\}, a=0
\end{aligned}
$$

Lemma: a is an accumulation point of $x \leq \mathbb{R}$ $\Leftrightarrow x_{n}: \mathbb{N} \rightarrow \mathbb{R}$ s. $\psi_{\square} x_{n} \in X \backslash\{a\}$ $\left(\forall n \in \mathbb{N}\right.$ and $x_{n} \rightarrow Q$.
Pe: Suppose a is an acc point Then $\forall n \in \mathbb{N}, \exists x_{n} \in X \backslash\{a\}$ s.t. $\left|x_{n}-a\right|<\frac{1}{n}$. Thus $x_{n} \rightarrow a$.

Suppose (*) holds. Fix $8>0$. $B y^{\prime}$ deft of $x_{n}, \exists \mathrm{~N} . t$. $0<1-x_{N}-a \mid<\delta$ 。

