MATH CCS 117: MIDTERM 1
Monday, May 6, 2024

Name: __

Signature: ___

This is a closed-book and closed-note examination. Please show your work in the space provided. You may use scratch paper. You have 1 hour and 15 minutes.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>extra credit</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Question 1 (10 points)

Consider a sequence \(a_n \) satisfying \(a_n \neq 0 \), for all but finitely many \(n \in \mathbb{N} \). If \(\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 0 \), find \(\lim_{n \to +\infty} a_n \).

We will show that \(\lim_{n \to +\infty} a_n = 0 \).

For any \(\epsilon' > 0 \), there exists \(N' \) s.t. \(n \geq N' \) ensures \(|\frac{a_{n+1}}{a_n}| < \epsilon' \). Thus \(|a_{n+1}| < \epsilon'|a_n| \), and so \(|a_{n+m}| < \epsilon'|a_{n+m-1}| < \epsilon'|a_{n+m-2}| < \cdots < \epsilon'|a_N| \), for all \(m \geq N \).

If \(\epsilon' < 1 \), \(\lim_{m \to \infty} \epsilon'^m = 0 \) \(\implies \lim_{m \to \infty} \epsilon'^m |a_N| = 0 \). Let \(\epsilon' = \frac{1}{2} \), and choose \(N' \) as above.

Fix \(\epsilon > 0 \) arbitrary. Since \(\lim_{m \to \infty} (\frac{1}{2})^m |a_N| = 0 \), there exists \(M \) s.t. \(m \geq M \) ensures \(|(\frac{1}{2})^m |a_N|| < \epsilon \). Thus, if \(n \geq M + N' \), then \(n = N' + m \) for some \(m \geq M \) and \(|a_n| = |a_{N' + m}| < (\frac{1}{2})^m |a_N| < \epsilon \).

This shows \(\lim_{n \to +\infty} a_n = 0 \).
Question 2 (10 points)

In class, we proved that, if $-1 < a < 1$, then $\lim_{n \to +\infty} a^n = 0$. Furthermore, it is clear that, if $a = 1$, then $\lim_{n \to +\infty} a^n = 1$.

(a) If $a > 1$, prove that $\lim_{n \to +\infty} a^n = +\infty$.

(b) If $a < -1$, prove that the limit of a^n does not exist.

Note that $a > 1$ ensures $a^n < a^{n+1}$, so the sequence is strictly increasing. Thus, it suffices to prove a^n is unbounded above. Assume, for the sake of contradiction that a^n is bounded above. Then it must converge to some $L \in \mathbb{R}$. Thus $\lim_{n \to \infty} a^n = \lim_{n \to \infty} a^{n+1} = \lim_{n \to \infty} a^n a = L a$. Since a sequence of convergent subsequences has some limit $L = 0$ is impossible since a^n is strictly increasing and $a > 1$. Thus $L = L a$ implies $L = 1$, which is a contradiction. This shows a^n is unbounded above.

(b) First, we show $\lim_{n \to \infty} a^n \neq \pm \infty$.

Since the odd elements are negative and the even elements are positive, for $m = 0$, there does not exist N s.t. $n \geq N$ ensures either $a^n \geq M$ or $a^n \leq M$. Thus $\lim_{n \to \infty} a^n \neq \infty$.
Now, we show a^n does not converge.

By the previous part, $\lim_{n \to \infty} 1_{a^n} = +\infty$.

Thus, a^n is not a bounded sequence.

Hence, it cannot converge.
First, we show (a). Suppose S is unbounded above, so $\sup(S) = +\infty$. We must show kS is unbounded above. Since S is unbounded above, $\forall M \in \mathbb{R}$, $\exists s \in S$ s.t. $s \geq \frac{M}{k} \Rightarrow ks \geq M$. Thus kS is unbounded above.

Now suppose S is unbounded above. Since $\sup(s)$ is an upper bound for S, $s \leq \sup(s) \forall s \in S \Rightarrow ks \leq k\sup(s) \forall s \in S \Rightarrow k\sup(s)$ is an upper bound for kS. Suppose M is an upper bound for kS, that is, $ks \leq M \forall s \in S$. Then $\frac{M}{k}$ is an upper bound for S, so $\frac{M}{k} \geq \sup(S) \Rightarrow M \geq k\sup(S)$. This shows $k\sup(S)$ is the least upper bound of kS. Hence $\sup(kS) = k\sup(S)$.

(a) If $k > 0$, prove that $\sup(kS) = k\sup(S)$.

(b) If $k < 0$, prove that $\sup(kS) = k\inf(S)$.

Given a nonempty subset $S \subseteq \mathbb{R}$ and $k \in \mathbb{R}$, define $kS := \{ks : s \in S\}$. (Note that S can be any nonempty subset; it is not necessarily bounded above.)