Math CCS 117: Practice Midterm 1

(Not to be turned in)

Question 1

Define a sequence s_{n} as follows: $s_{1}=1$ and, for $n \geq 1, s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)$. Find $\lim _{n \rightarrow+\infty} s_{n}$.

Question 2

(a) Suppose $\lim _{n \rightarrow+\infty} s_{n}=+\infty$ and $s_{n_{k}}$ is a subsequence of s_{n}. Prove that $\lim _{k \rightarrow+\infty} s_{n_{k}}=+\infty$.
(b) Suppose s_{n} is a sequence for which the limit does not exist - that is s_{n} doesn't converge or diverge to $\pm \infty$-and $s_{n_{k}}$ is a subsequence of s_{n}. Does the limit of $s_{n_{k}}$ not exist? Justify your answer with a proof or counterexample.

Question 3

Suppose A and B are nonempty subsets of \mathbb{R}. (Note that we do not assume that either A or B is bounded above.) Define $A+B=\{a+b: a \in A$ and $b \in B\}$. Prove $\sup (A+B)=\sup A+\sup B$.

Question 4 - Extra Credit

Given a sequence s_{n} of real numbers, define its arithmetic mean by

$$
\sigma_{n}=\frac{s_{1}+s_{2}+\cdots+s_{n}}{n} .
$$

(a) If s_{n} converges, prove that σ_{n} converges.
(b) Give an example to show that the converse of part (a) is not true.
(c) Let $a_{n}=s_{n+1}-s_{n}$. Assume that $\lim _{k \rightarrow+\infty} k a_{k}=0$ and σ_{n} converges. Prove that s_{n} converges.

Hint: First, show that

$$
s_{n+1}-\sigma_{n+1}=\frac{1}{n+1} \sum_{k=1}^{n} k a_{k} .
$$

Moral of the problem: while the convergence of σ_{n} is not, in general, sufficient to imply the convergence of s_{n}, if we also know that the increments of s_{n} converge to zero sufficiently quickly, it is sufficient.

