Math CCS 117: Practice Midterm 2

(Not to be turned in)

Question 1

Let $0 \leq \alpha<1$, and let f be a function from \mathbb{R} to \mathbb{R} that satisfies

$$
|f(x)-f(y)| \leq \alpha|x-y|, \quad \text { for all } x, y \in \mathbb{R}
$$

(Such a function is called an α-Lipschitz function.)
Let $a_{1} \in \mathbb{R}$, and let $a_{n+1}=f\left(a_{n}\right)$ for $n \in \mathbb{N}$. Prove that a_{n} is a Cauchy sequence.

Question 2

This question will lead you through an alternative proof that any continuous function $f:[a, b] \rightarrow \mathbb{R}$ is bounded on $[a, b]$.

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a function that is not bounded on $[a, b]$.
(i) Prove that there exists $x_{n}: \mathbb{N} \rightarrow[a, b]$ so that $\lim _{n \rightarrow+\infty}\left|f\left(x_{n}\right)\right|=+\infty$.
(ii) Explain why we may choose the sequence x_{n} from part (i) so that it converges to some $x_{0} \in[a, b]$.
(iii) Use part (ii) to show that the function f is not continuous at x_{0}.

Question 3

Fix $a \in \mathbb{R}$ and consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f_{a}(x)= \begin{cases}\frac{1+x}{1-x^{2}} & \text { if } x \notin\{-1,1\} \\ a & \text { if } x \in\{-1,1\} .\end{cases}
$$

(i) Prove that there exists $a \in \mathbb{R}$ so that f_{a} is continuous at x, for all $x \in \mathbb{R} \backslash\{1\}$.
(ii) Show that, for all $a \in \mathbb{R}, f_{a}$ is not continuous at 1 .

Question 4 - Extra Credit

In this problem, you will prove part of the Intermediate Value Theorem.
THEOREM 1. Consider an interval $I \subseteq \mathbb{R}$ and suppose $f: I \rightarrow \mathbb{R}$ is continuous at x, for all $x \in I$. Then, for any $a, b \in I$ with $a<b$ and $f(a)<f(b)$, if $y_{0} \in(f(a), f(b))$, there exists $x_{0} \in(a, b)$ so that $f\left(x_{0}\right)=y_{0}$.
(i) Define $S:=\left\{x \in[a, b]: f(x)<y_{0}\right\}$. Prove that $S \neq \emptyset$ and S is bounded above.
(ii) Define $x_{0}:=\sup (S)$. Show that $x_{0} \in(a, b)$.
(iii) Show that there exists a sequence $s_{n}: \mathbb{N} \rightarrow S$ so that $\lim _{n \rightarrow+\infty} s_{n}=x_{0}$ and $y \geq \lim _{n \rightarrow+\infty} f\left(s_{n}\right)=$ $f\left(x_{0}\right)$.
(iv) Show that there exists a sequence $t_{n}: \mathbb{N} \rightarrow[a, b] \backslash S$ so that $\lim _{n \rightarrow+\infty} t_{n}=x_{0}$ and $y \leq$ $\lim _{n \rightarrow+\infty} f\left(t_{n}\right)=f\left(x_{0}\right)$.
(v) Explain why parts (b) and (c) ensure that $f\left(x_{0}\right)=y$.

