Math CCS 117: Practice Final Exam

(Not to be turned in)

Question 1

Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function; that is, for all $x, y \in[a, b], x<y$ implies $f(x) \leq f(y)$. Prove that f has a right limit at every $c \in[a, b)$ and a left limit at every $c \in(a, b]$.

Question 2

Consider a sequence $s_{n}: \mathbb{N} \rightarrow \mathbb{R}$. Prove that $\limsup \left|s_{n}\right|=0$ if and only if $\lim s_{n}=0$.

Question 3

Let f be defined on $[0,1]$ by the formula

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x \in \mathbb{Q} \text { and } x=\frac{m}{n} \text { is in lowest terms, } m, n \in \mathbb{N} . \\ 0 & \text { if } x \text { is irrational } \\ 1 & \text { if } x=0 .\end{cases}
$$

Prove that f is continuous only at the irrational points of $[0,1]$.

Question 4 - Extra Credit

Let f be an increasing function on $[a, b]$. Prove that the set of points at which f is not continuous is countable.

