MATH 117: HOMEWORK 2

Due Monday, April 14th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1*

The following theorem provides a mild extension of the principle of mathematical induction.

THEOREM 1. Fix $m \in \mathbb{N}$. Given a list of propositions

$${P_m, P_{m+1}, P_{m+2}, \dots} = {P_k : k \in \mathbb{N}, k \ge m},$$

suppose the following holds:

- (i) P_m is true;
- (ii) for all $n \in \mathbb{N}$ with $n \geq m$, if P_n is true, then P_{n+1} is true;

Then $P_m, P_{m+1}, P_{m+2} \dots$ are all true.

Prove the theorem.

Question 2*

Use Question 1 to prove the following statements:

- (a) $n^2 > n+1$ for all natural numbers $n \ge 2$.
- (b) $n! > n^2$ for all natural numbers $n \ge 4$. (Recall that $n! = n(n-1) \cdot \dots \cdot 2 \cdot 1$. For example, $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.)

Question 3*

Consider an ordered field F and fix $p, q \in F$. Suppose that for all $s \in F$ with s > p, we have $q \le s$. Prove that $q \le p$.

Question 4

Consider an ordered field F and suppose $S \subseteq F$ is nonempty and bounded above. Prove that a is the supremum of S if and only if a is an upper bound for S and, for all $\epsilon > 0$, there exists $s \in S$ so that $s > a - \epsilon$.

Question 5

Consider an ordered field F and a nonempty subset $S \subseteq F$.

- (a) If the maximum of S exists, prove that the maximum is the supremum of S.
- (b) If $\sup S \in S$, prove that $\max(S) = \sup(S)$.
- (c) If $\sup S \not\in S$, prove that $\max(S)$ does not exist.

Question 6

Let S be a nonempty bounded subset of \mathbb{R} .

- (a) Prove that $\inf S \leq \sup S$.
- (b) What can you say about the number of elements in S if $\inf S = \sup S$? Justify your answer with a proof.

Question 7*

Suppose S and T are nonempty bounded subsets of \mathbb{R} .

- (a) Prove that if $S \subseteq T$, then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
- (b) Prove $\sup(S \cup T) = \max\{\sup S, \sup T\}$. (Note: for this part, do not assume $S \subseteq T$.)

Question 8*

Consider the following proposition:

PROPOSITION 2. Every nonempty subset S of \mathbb{R} that is bounded below has an infimum.

This question will lead you through the proof of the proposition.

- (a) Suppose S is as in the proposition above. Define the set $-S = \{-s : s \in S\}$. Show that -S is bounded above.
- (b) Use the definition of \mathbb{R} to prove that -S has a supremum, $\sup(-S)$.
- (c) Prove that $-\sup(-S)$ is the infimum of S.

Question 9

Let S and T be nonempty bounded subsets of \mathbb{R} , and define $S+T=\{s+t:s\in S \text{ and } t\in T\}$. Prove $\sup(S+T)=\sup S+\sup T$.

Question 10*

For each of the sets below, answer the following questions: Is it bounded above? If so, what is its supremum? Is it bounded below? If so, what is its infimum? You do not need to justify your answers.

- (a) $[-\sqrt{2}, \sqrt{2}]$
- (b) $\{-1, 0, e, \pi\}$
- $(c) \{1\}$
- (d) $\bigcup_{n=1}^{\infty} [2n-1,2n)$
- (e) $\left\{1 \frac{1}{n} : n \in \mathbb{N}\right\}$
- (f) $\{x \in \mathbb{R} : x^2 < 1\}$
- (g) $\bigcap_{n=1}^{\infty} (-1 \frac{1}{n}, 1 + \frac{1}{n})$

Question 11*

Where is the flaw in the following "proof" by induction that any two positive integers are equal?

THEOREM 3. Consider $k, m \in \mathbb{N}$. If $n = \max\{k, m\}$, then n = k = m.

Proof. Let S(n) be the statement of the theorem. If $1 = \max\{k, m\}$, then k = m = 1 by definition of \mathbb{N} . Suppose $n+1 = \max\{k, m\}$. Then $n = \max\{k-1, m-1\}$, so by induction, n = k-1 = m-1, and thus n+1 = k = m.

Question 12

Suppose $X \subseteq \mathbb{N}$ is nonempty and bounded above. Prove that $\max(X)$ exists.