MATH 117: HOMEWORK 3

Due Monday, April 21st at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1

Given a sequence s_n , suppose that $s, \tilde{s} \in \mathbb{R}$ are both limits of the sequence. Prove that $s = \tilde{s}$.

This shows the limit of a sequence is unique and justifies the fact that we refer to "the" limit of a sequence.

Question 2

Consider $x, y \in \mathbb{R}$ satisfying $x, y \in [1, 2]$. Suppose $x^2 < 2$ and $y^2 > 2$.

- (a) Suppose $0 < \epsilon < 1$. Prove that $(x + \epsilon)^2 \le x^2 + 5\epsilon$ and $(y \epsilon)^2 \ge y^2 4\epsilon$.
- (b) Prove that there exists $\epsilon_1, \epsilon_2 \in (0, 1)$ so that $x^2 + 5\epsilon_1 < 2$ and $y^2 4\epsilon_2 > 2$.
- (c) Use parts (a) and (b) to show that there exists $\epsilon_1, \epsilon_2 \in (0,1)$ so that $(x + \epsilon_1)^2 < 2$ and $(y \epsilon_2)^2 > 2$.

Question 3*

Consider an ordered field F. For any $a \in F$, recall that a^2 is an abbreviation for $a \cdot a$.

Fix $a \in F$ with $a \ge 0$. Consider the set $S = \{c \in F : c \ge 0, c^2 \le a\}$

- (a) Prove that S is nonempty and bounded above.
- (b) Suppose $F = \mathbb{R}$. Explain why, in this case, the supremum of S exists.

Question 4*

Consider the set $S = \{c \in \mathbb{R} : c \ge 0, c^2 \le 2\}$. Let $b = \sup(S)$.

- (a) Prove that $b \in [1, 2]$.
- (b) Prove that $b^2 \ge 2$. (Hint: proceed by contradiction, using question 2).
- (c) Prove that $b^2 \leq 2$. (Hint: proceed by contradiction, using question 2).

Combining parts (b) and (c), we see that $b^2 = 2$.

In this way, we have shown there exists a real number b > 0 so that $b^2 = 2$. We can now define the symbol $\sqrt{2}$ by setting $\sqrt{2} := b$. In this way, we have proved $\sqrt{2} \in \mathbb{R}$. Combining this with our result from class that $\sqrt{2} \notin \mathbb{Q}$, we see that $\sqrt{2} \in \mathbb{I}$, where $\mathbb{I} := \mathbb{R} \setminus \mathbb{Q}$ is the set if *irrational numbers*.

Question 5*

(a) Prove the following, using the definition of convergence:

$$\lim_{n \to +\infty} a^n = \begin{cases} 0 & \text{if } |a| < 1\\ 1 & \text{if } a = 1. \end{cases}$$

You may use standard facts about the natural logarithm on the real numbers, even though we haven't proved them yet. In particular, you may use that the natural logarithm $\log(x)$ is an increasing function for x > 0: that is, for any $x, y > 0, x \le y \iff \log(x) \le \log(y)$.

(b) If $a \leq -1$ prove that the sequence does not converge.

Question 6

Fix $a \in \mathbb{R}$ and consider the collection of rational numbers $S = \{q \in \mathbb{Q} : a \leq q\}$.

- (a) Suppose the underlying field is either $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{Q}$. For which values of a does the minimum of S exist? Justify your answer with a proof.
- (b) Suppose the underlying field is $\mathbb{F} = \mathbb{R}$. Prove that $\inf(S) = a$.

Question 7

Given $s, t \in \mathbb{R}$, consider the set $(s, t] = \{x \in \mathbb{R} : s < x \leq t\}$. Find the maximum, minimum, supremum, and infimum of the set or state that they do not exist. Justify your answers with proofs.

Question 8

Consider a sequence s_n . Prove that s_n is a bounded sequence if and only if $S := \{s_n : n \in \mathbb{N}\}$ is a bounded set.

Question 9*

- (a) State the definition of what it means for a sequence s_n to converge to a limit s.
- (b) State the definition of what it means for a sequence s_n to *not* converge to a limit s, by negating the definition of convergence.
- (c) Use the definition of a convergent sequence to prove that $\lim_{n\to+\infty} \frac{n-3}{n^2+9} = 0$.
- (d) Use the definition of a convergent sequence to prove that the sequence $s_n = (n+1)^2 2$ does not converge.

Question 10*

Determine if the following sequences converge. Justify your answer with a proof.

(a)
$$a_n = \frac{7n-19}{3n+7}$$

(b)
$$b_n = \sin(\frac{n\pi}{3})$$

You may use standard facts about trigonometric functions, even though we haven't proved them.

Question 11^*

Consider two sequences, a_n and b_n . Suppose a_n converges to a and that there exists $N \in \mathbb{R}$ so that $b_n = a_n$ for all $n \ge N$. Prove that b_n converges to a.