MATH 117: HOMEWORK 5

Due Monday, May 12th at 11:59pm

Questions followed by * are to be turned in. Questions without * are extra practice. At least one extra practice question will appear on each exam.

Question 1^*

Find the limit of the following sequences. Justify your answer.

- (i) $\lim_{n \to +\infty} \frac{2n^2 + n + 3}{n^2 + 1}$
- (ii) $\lim_{n \to +\infty} \sqrt{n+1} \sqrt{n}$
- (iii) $\lim_{n \to +\infty} \frac{1}{n!}$

Question 2*

Define a sequence s_n as follows: $s_1 = 1$ and, for $n \ge 1$, $s_{n+1} = \frac{1}{3}(s_n + 1)$.

- (a) Use induction to prove that $s_n \ge 1/2$ for all n.
- (b) Use the definition of the sequence and part (a) to show that the sequence is decreasing.
- (c) Prove that $\lim s_n = s$ for some $s \in \mathbb{R}$.
- (d) Prove that $\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} s_{n+1}$.
- (e) Use part (d), the definition of s_n , and the limit theorems to find the value of s.

Question 3^*

Let s_n be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + \dots + s_n)$. Prove σ_n is an increasing sequence.

Question 4*

Prove $\limsup_{n \to +\infty} |s_n| = 0$ if and only if $\lim_{n \to +\infty} s_n = 0$.

Question 5

Given a sequence s_n , prove that $\limsup_{n\to+\infty} |s_n| < +\infty$ if and only if s_n is bounded.

Question 6

Determine whether the following statements are true or false. If they are true, prove them. If they are false, give a counterexample and justify it.

- (a) If a sequence s_n satisfies $\limsup_{n \to +\infty} s_n = 2$, then $s_n > 1.99$ for all n large enough.
- (b) If a sequence s_n satisfies $\limsup_{n \to +\infty} s_n = b$, then $s_n \leq b$ for all n large enough.

Question 7*

Give examples of...

(a) A sequence x_n of irrational numbers having a limit that is a rational number.

(b) A sequence r_n of rational numbers having a limit that is an irrational number.

Justify your answers.

Question 8*

Let s_n and t_n be the following sequences that repeat in cycles of four:

 $s_n = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, \dots)$ $t_n = (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, \dots).$

Compute the following quantities. You do not need to justify your answer.

- (a) $\liminf s_n$
- (b) $\limsup s_n$
- (c) $\liminf t_n$
- (d) $\limsup t_n$
- (e) $\liminf s_n + \liminf t_n$
- (f) $\liminf s_n + \limsup t_n$
- (g) $\limsup s_n + \limsup t_n$
- (h) $\limsup(s_n t_n)$
- (i) $\liminf(s_n + t_n)$
- (j) $\limsup(s_n + t_n)$
- (k) $\liminf(s_n t_n)$

Pay attention to the above examples where we see that the liminf and limsup of the sum/product is not necessarily equal to the sum/product of the liminf and limsup.

Question 9

Determine if the following statement is true or false. If it is true, prove it. If it is false, provide a counterexample.

If s_n and t_n are sequences whose limits exist and for which $s_n < t_n$ for all but finitely many $n \in \mathbb{N}$, then $\lim_{n \to +\infty} s_n < \lim_{n \to +\infty} t_n$.

Question 10

Determine if the following statement is true or false. If it is true, prove it. If it is false, provide a counterexample.

If a sequence a_n is not increasing, then a_n is decreasing.

Question 11*

(i) Prove the nested interval theorem: If $\{[a_n, b_n]\}_{n \in \mathbb{N}}$ is a collection of closed intervals satisfying

 $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], \text{ for all } n \in \mathbb{N},$

then $\cap_{n \in \mathbb{N}}[a_n, b_n]$ is nonempty.

(ii) Find a necessary and sufficient condition that $\bigcap_{n \in \mathbb{N}} [a_n, b_n]$ contains a single point. Justify your answer with a proof.