Lecture 15 (S 117, S25 C Katy Craig, 2025 Annalderner . Midterm 2 one week from today
No HW this week practice midterm 2 Recall: EMAJORTHM 8 Thm (Internediate Value Thm) If fis continuous on an interval I Edom(f), then for all a, be I, if y lies between flat and flot, then there exists x between a and 6 s.t. f(x)=y. END OF MATERIAL FOR MIDTERM 2 =

On the other hand, f is uniformly continuous on [a,b], for any S[a,b] = dom(f).

To see this, fix E>D arbitrary. For any $z \in [a,b]$, $O[z] \geq \min \{ [a], [b] \}$. Let $S \coloneqq (\min \{ [a], [b] \})^2$. Then... (Read from bottom to top) $|f(x) - f(y)| < \varepsilon$ $\left|\frac{-\chi}{\chi}\right| < \varepsilon$ $|y-x| < \varepsilon |x||y|$ $|y-x| < \varepsilon (\min \xi |a|, |b|z)^2$ $|y-x| < \varepsilon (\min \xi |a|, |b|z)^2$

Therefore, fis unif continuous on Tajo.

Aquick review of earlier material... · It'snfla,b] YnelN and his osn=s, then se [a,b]. rn stn VnE/N => limin se limit th limits exist

In particular, for any nEN, I xn, yn Ela, b] s.t. 1xn tyn 1<n and 1f(xn) - f(yn)128.

Since any bounded sequence has a convergent subsequence there exist subsequenced Xnx and ynx that converge to limits xot yo.

By Squeeze Lemma Yn n ≤ Xn ≤ Yn th

ensured yo $\leq \chi_0 \leq y_0 = 2\chi_0 = y_0$.

Furthermore, xn e [a, b] In implies Xot [a, b].

Q: If f is cts on $(a,b) \leq \text{dom}(f)$, is f unif cts on (a,b)? A: No, consider $f(x) = \frac{1}{x}$, (a,b) = (0,1).

Why are unif cts fins important?

Think back to ets frus...

"Continuous functions send convergent sequences with limits in dom(f) to convergent sequences" That is, if $\lim_{n \to \infty} x_n = x_0$, then $\lim_{n \to \infty} f(x_n) = f(x_0)$

Wait... $f(x) = \frac{1}{x}, \quad \chi_n = \frac{1}{x}$ sequence

f(xn) = n does not converge

Interestingly, we don't need guarditication (7) for unif clafford.

Thm: If f is a unitembry cts fn on SEdom(f) and Sn is a convergent sequence satisfying Sp ES HnEIN, then flish is convergent.

Since sn is convergent, hence (euchy, $\exists N s. to n, m>N$ $ensured lsn-sml < \delta$, so $|f(sn)-f(sm)| < \varepsilon$. I What follows cty? Differtiability! In Calculus, $f'(x) = \lim_{y \to \infty} f(y) - f(x)$ To make sense of this, we must define what it means to take the limit of a hunction. function.

Mental image: Х f (x) lim $)=+\infty$ X->0 3 Au im \square

 $f(x) = \begin{cases} i & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ $\lim_{x \to 0} f(x) = 1 \neq f(0)$ $\chi \rightarrow 0$ Rmk: If $a \in (a_0, a_1) \in \text{dom}(\mathcal{F})$ and f is cts on (a_0, a_1) , then $\lim_{x \to \infty} f(x) = f(a)$. x-)a

Ex: fis continuous on don(f), a $\epsilon dom(f)$, but $\lim_{x \to a} f(x) \neq f(a)$.

