Lecture 18 (S 117, S25 C Katy Craig, 2025 Annowhice mends: ° HWF due Friday ° Final Exam Monday 12-3pm

Kecall:

Stef: Given S⊆R, a sequence of functions fn: S>R converges pointwise to a function f:S>R if

 $\lim_{n \to \infty} f_n(\chi) = f(\chi), \quad \forall \chi \in S$

Thm: luniform limit of ds for is cts) Given $S \leq IR$ and $f_n, f: S \rightarrow IR s.t.$ $f_n \rightarrow f$ uniformly on S, Suppose $dom(f) \neq S$.

Then $\forall x_0 \in S$, if fn is cts at $x_0 \forall n \in \mathbb{N}$, f is cts at x_0 .

Rmk: It follows that, under the hypotheses of the theorem, if find is cts on S, then its uniform limit f is cts on S.

END OF MATERIAL FOR FINAL EXAM Ihm (Root test): Given a series Zak, define a:= limsup lak! /k yk k=>a> lim sup{lak!*k>K} if a<1, the series converges absolutely. ° if α>1, the series diverges

Series of functions Important example: Power series $Zan x^n$ n=0("infinitely long" polynomial) When does a power series approximate à continuous function? When does it approximate a real valued function, i.e., when does the series converge?

Rmk: Note that all power series converge at x=0.

Ex: Consider Zxn. Then $\beta = \limsup_{n \to \infty} 1^{lm} = 1$. The previous theorem ensures the series converges for 6/41 and diverges for 6/71. In fact, for k|<1, it converges to $f(x) = \frac{1}{1-x}$.

Given that we want to approximate cts fins by power series, we are interested when they converge uniformly, that is when the partial Sum sequence

 $f_N(x) = \sum_{n=0}^{N} a_n x^n$

converges uniformly. For segnences of real numbers, Sn convergent Isn Cauchy. Infact, the same is true for sequences of firs wrt uniform convergence. Def: Given SER, a sequence allfunctions fn: S > R 1s uniformly Cauchy on S if

 $\forall \xi \ge 0$, $\exists N s.t. m, n \ge N$ ensures $|f_n(x) - f_m(x)| < \xi$, $\forall x \in S$.

Thm: Given $S \in \mathbb{R}$, a sequence of functions $fn: S \supset \mathbb{R}^{1}$ that is uniformly Cauchy then there exists $f:S \supset \mathbb{R}$ s.t. $fn \rightarrow f$ uniformly on S.

Pl: First, we must "guess" the

by f(x). We will now show fn > f uniformly on S. Fix E>O. Since fn is uniformly Cauchy, JN s.t. mm Nenswes $|f_n(x) - f_m(x)| < \frac{\varepsilon}{2}, \forall x \in S.$ $f_{m}(x) \stackrel{\varepsilon}{=} \stackrel{\forall}{\leq} f_{n}(x) < f_{m}(x) + \stackrel{\varepsilon}{=}$ Sending m>20, for n>N,

Thus, for $m \ge N$, $|f_n(x) - f(x)| < \varepsilon$, $\forall x \in S$.

with radius of convergence R>0, $\forall R, E(0, R)$, the power series converges uniformly to a continuous function on ER_{1}, R_{1} .

Pl: By the previous theorem, it suffices to show $f_N(x) := \sum_{n=0}^{N} a_n x^n$ is uniformly Cauchy on ER, R]. Fix E>O. Since Zanxn converges absolutely on (-R, R), the socies of real numbers Skinl R," converges. Thus, the corresponding partial sum

seguence $S_N := \sum_{n=0}^N lan (R_n^n)$ is Couchy. for all $\chi \in [-R_1, R_1]$ $|f_N(x) - f_M(x)|$

This shows fp(x) is uniformly Cauchy on [-R, R].

for limit ... $\xi_{\chi}: \sum_{n=0}^{\infty} \frac{\chi^n}{n!} = e^{\chi}$ Raclius of convergence depends on... B:= limsup 1/n!//n n->00 We will show B=0, so R=+∞. It suffices to show $(n!)'n \rightarrow +\infty$

(k+1)(n-k) for U≤k≤n tachof these is =n. Thus $(n!)^{z} \ge n^{n}$ $(n!)^{m} \ge \sqrt{n}$ We can obtain familiar properties of exponential directly from series... $d e^{\chi} = \frac{d}{d\chi} \sum_{n=0}^{\infty} \frac{\chi^n}{n!} = \sum_{n=1}^{\infty} \frac{d}{d\chi} \frac{\chi^n}{n!}$ $= \sum_{n=0}^{\infty} n \frac{\chi^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{\chi^{n-1}}{(n-1)!} = e^{\chi}$