MATH CCS 117: MIDTERM 2

Thursday May 29, 2025

Name: _____

Signature: _____

This is a closed-book and closed-note examination. Please show your work in the space provided. You may use scratch paper. You have 1 hour and 15 minutes.

Question	Points	Score
1	8	
2	7	
3	15	
4	extra credit	
Total	30	

Question 1 (8 points)

Suppose s_n is a bounded sequence, and define $s = \sup\{s_n : n \in \mathbb{N}\}.$

- (a) Suppose $s_n < s$ for all $n \in \mathbb{N}$. Prove that there exists a subsequence of s_n converging to s.
- (b) Suppose $s_n = s$ for some $n \in \mathbb{N}$. Give an example of such a sequence that doesn't have a subsequence converging to s.

Question 2 (7 points)

Suppose s_n and t_n are bounded sequences.

- (a) Prove that $\limsup(s_n + t_n) \le \limsup s_n + \limsup t_n$.
- (b) Give an examples of bounded sequences \boldsymbol{s}_n and \boldsymbol{t}_n for which

 $\limsup(s_n + t_n) < \limsup s_n + \limsup t_n.$

Question 3 (15 points)

- (a) Suppose s_n is a nonnegative sequence that converges to s. Prove that $\sqrt{s_n}$ converges to \sqrt{s} . (You may use the fact that, for any $a, b \ge 0, a \le b \iff \sqrt{a} \le \sqrt{b}$.)
- (b) Prove that $f(x) = \sqrt{x}$ is a continuous function on $[0, +\infty)$.
- (c) Prove that $\frac{x^{100}}{\sqrt{1-x}} = 2$ for some $x \in (0, 1)$. (You may use without proof that $g(x) = x^{100}$ and h(x) = 1 - x are continuous functions.)

Let $0 \leq \alpha < 1$, and let $f : \mathbb{R} \to \mathbb{R}$ satisfy

$$|f(x) - f(y)| \le \alpha |x - y|,$$
 for all $x, y \in \mathbb{R}$.

(Such a function is called an α -Lipschitz function. When $\alpha \in [0, 1)$, it is known as a contraction mapping.)

Let $a_1 \in \mathbb{R}$, and let $a_{n+1} = f(a_n)$ for $n \in \mathbb{N}$.

(a) Prove that a_n is a Cauchy sequence.

(b) Prove that there exists a unique real number $a \in \mathbb{R}$ so that f(a) = a.

In this problem, you have shown that any contraction mapping has a unique fixed point.