MATH CCS 117: PRACTICE MIDTERM 1

(Not to be turned in)

Question 1

- (a) Let s_n be a bounded sequence of real numbers. Let A be the set of $a \in \mathbb{R}$ such that $\{n \in \mathbb{N} : s_n < a\}$ is finite. In other words, A is the set of real numbers a for which at most finitely many s_n are less than a. Prove that $\sup A = \liminf s_n$.
- (b) How would you want to define $\sup \emptyset$, where \emptyset is the empty set, in order to make the result true for unbounded sequences s_n ? You do not need to justify your answer.

Question 2

Define a sequence s_n as follows: $s_1 = 1$ and, for n > 1, $s_{n+1} = \left(\frac{n}{n+1}\right) s_n^2$.

- (a) Prove that $0 \leq s_n \leq 1$ for all $n \in \mathbb{N}$.
- (b) Prove that s_n is a decreasing sequence.
- (c) Explain why s_n converges.
- (d) Use the definition of s_n to find the value of s, where $s = \lim_{n \to +\infty} s_n$.

Question 3

In this question, we will justify our notation $a^{1/n}$ for $a \ge 0$ by proving that, for any $a \ge 0$, there exists a unique $x \ge 0$ so that $x^n = a$.

- (a) For any $n \in \mathbb{N}$, prove that $f(x) = x^n$ is a continuous function.
- (b) Use properties of continuous functions to prove that, for any $a \ge 0$, there exists $x \ge 0$ so that f(x) = a.
- (c) Prove that the $x \ge 0$ found in part (ii) is unique.

Question 4 - Extra Credit

Let $0 \leq \alpha < 1$, and let f be a function from \mathbb{R} to \mathbb{R} that satisfies

 $|f(x) - f(y)| \le \alpha |x - y|, \text{ for all } x, y \in \mathbb{R}.$

(Such a function is called an α -Lipschitz function.)

Let $a_1 \in \mathbb{R}$, and let $a_{n+1} = f(a_n)$ for $n \in \mathbb{N}$. Prove that a_n is a Cauchy sequence.

Additional Practice Problems

Question 5

- (a) Prove that, for any $c \in \mathbb{R}$, the constant function f(x) = c is continuous. Prove that, for any $k \in \mathbb{R}$, the function g(x) = kx is continuous.
- (b) Consider the function

$$f(x) = \begin{cases} 1/x & \text{ for } x \neq 0\\ 0 & \text{ for } x = 0. \end{cases}$$

Prove that f(x) is not continuous.

Question 6

Let f be a real-valued function whose domain is a subset of \mathbb{R} . Prove that f is continuous at x_0 in dom(f) if and only if for every sequence x_n in dom(f) \ { x_0 } that converges to x_0 , we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

(Hint: To show that if f satisfies the above criteria then it is continuous at x_0 , proceed by contradiction. Using HW6, Q2(c), explain why there exists $\epsilon > 0$ and a subsequence x_{n_k} so that $|f(x_{n_k}) - f(x_0)| \ge \epsilon \ \forall k \in \mathbb{N}$, while $\lim_{k \to +\infty} x_{n_k} = x_0$. Explain why this is a contradiction.)