Practice Milterm 2 Solutions, CS117, S25
Practice Milterm 2 Solutions, (S117, S25) © Katy Craig, 2025
Fix GEA Then I No Sit nZNa encuron
First, we show how so is an upper bound for A. Fix a \(A \). Then \(\frac{1}{2} \) Na s.t. \(n \) Na ensures Sn \(\frac{2}{2} a \). Thus, for \(N > N \), \(\frac{1}{2} \) Sn \(\frac{2}{2} \) sn \(\frac{1}{2} \).
Thus
Thus, $\lim_{n\to\infty} S_n = \lim_{N\to\infty} \inf_{n\to\infty} \{S_n: n>N\}$ $\geq a$
$\geq a$
Our argument above shows that liming $sn2sup(A)$. Suppose, for the sake of contradiction, that $sup(A) < liming sn$. Then $\exists r \in IR s.t$ $sup(A) < r < liming sn$. Since $r \notin A$, $l \notin n \in IN : Sn < r \notin I$ is infinite. Thus, $l \in IR : n \in IN : Sn \in IR : n \in IR :$
Suppose, for the sake of contradiction, that
Sup(A) < mind sn. Then 3 r FTR s.t
Sup(A) < r < liming sn. Since r&A, [\xintelN: Sn <r3]< td=""></r3]<>
is infinite. Thus, inffrience of YNEIN.
, J
This implies liming sn = r, which is a contradiction.
$\triangle Sup \emptyset = -\infty$

(a) We proceed by induction. It is clear that $0 \le s_1 \le 1$. Suppose $0 \le s_n \le 1$. Then since $\frac{n}{120}$ Sn+1= (m+1) Sn = 0. Likewise, since m+1= land sn=sn=1, (m+1)sn=1. This gives the result. (b) Since 05551, snesn. Since 05 mill,

Sn+1 = (mi) sn2 = 1 sn2 = sm. This shows it is decreasing.

All bounded monotone seguences converge.

(A) Let sER be the limit of Sn. Since Sn+1 has
the same limit, of sn. Since Sn+1 has $S = \lim_{n \to \infty} S_{n+1} = \lim_{n \to \infty} (\frac{n}{n+1}) S_n^2.$

Since sn is convergent, $\limsup_{n \to \infty} sn^2 = \limsup_{n \to \infty} sn / \limsup_{n \to \infty$

(3)
@ Fix arbitrary xo = dom(f)=R. Fix
an arbitrary segrence Xx converging
an arbitrary segrence χ_k converging to χ_0 . Assume $\chi_k \to \chi_0^2$ for leyn.
Since the limit of the product is the
Since the limit of the product is the product of the limits, $\chi_k^{+1} = \chi_k^2 \chi_k$ $\rightarrow \chi_0^1 \chi_0^0 = \chi_0^{0+1}$. Thus, by induction,
-> xo xo=xo+! Thus, by induction,
Xx > xn & nEIN. This shows f is
cord Muons.

Define result is clearly true for a=0, so suppose a>0.0 Note that, if a≤1, aⁿ≤1 ∀ n∈N. Likewise, if a>1, $a<a^n$ ∀ n∈N. Define a≠=5 1 if a≤1Then a≠>0 and f(a≠)≥a.

Since f is cts, f(0)=0, and $f(a*) \ge a$, the Intermediate Value Theorem applied to the closed interval [0,a*]ensures there exists $x \in [0,a*]$ so that $f(x) = a \in [f(0), f(a*)]$.

(c) Assume, for the sake of contradiction.
(c) Assume, for the sake of contradiction, that $f \propto x = 0$ s.t. () $x \neq y$ and $x^n = y^n = a$. WLOG, suppose
$\chi = \chi$
Assume xl <yl 100="12+1" <="" for="" in.="" le="" some="" td="" then="" thun="" xl+1<="" xn<10<="" xxxl=""></yl>
Assume $\chi^{\ell} \leq y^{\ell}$ for some $\ell \in IN$. Then $\chi^{\ell+1} \leq \chi y^{\ell} \leq y^{\ell} \leq y^{\ell+1}$. Thus $\chi^{n} \leq y^{n}$. It is contradicts that
1x - y - a.
(4) ··
5) (a) Fix xo & R and a sequence xn converging to xo. We must show f(xn) converges to f(xo). Since f(xn) = c for all ne/N and f(xo) = c,
converging to xo. We must show
f(xn) converges to f(xs). Since
f(xn)=c for all nEN and f(xo)=c,
this is trivially true.
(b) Take xo=0 and xn= in then
b) Take $x_0 = 0$ and $x_n = \frac{1}{n}$. Then $\lim_{n \to \infty} x_n = x_0 \text{but} \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} n = +\infty$
$\neq 0 = f(x_0)$

4) Suppose of 1s cts at xo. By defin of cty, for every seguence xn=dom(t) s.t. n=20 xn=1 in Since
$(dom(f))$ $\{x_0\}$ \in $dom(f)$, for every sequence $x_n \in dom(f)$ $\{x_0\}$ \in $x_0 \in$
(Now, suppose that for every sequence the Xnfdom(f)({xo} s.t. histoxn=xo we have have him f(xn)=f(xo). Let yn be an arbitrary sequence in dom(f) s.t.
We must Show hos flyn) = f(xo). Assume for the sake of contradiction, that flyn) does not converge to f(xo).

By HW6, Q2(c), 3 =>0 and a
subsequence flyn, such that
Subsequence $f(y_{n_k})$ such that $ f(y_{n_k}) - f(x_0) ^2 \varepsilon \ \forall \ k \in [N]$. Note that this is only possible if $y_{n_k} \neq x_0$ for all $k \in [N]$. However this means
thisis only possible if you + xo for all
KEIN. However this means
ynk Edom(f) 13 xoz, and since ynk is a subsequence of the convergent segmence yn, limsoynk=xo
a subsequence of the convergent
seguence un, Olimosum = xo
J'(K
By assumption (+), this implies
By assumption (#), this implies limber flynk)=f(xw). This contradicts (##).