Intro to Optinal Trousport
Let $\mu \in P(x), \quad v \in P(y)$.

$$
\begin{array}{ll}
d u=f(x) d x & \int f(x) d x=1 \\
d v=g(x) d x & \int g(y) d y=1
\end{array}
$$

$$
T: X-Y
$$

$$
A \subseteq Y \quad V(A)=\mu\left(T^{-1}(A)\right)=\int_{Y} \pi_{A}(y) g(y) d y
$$

$r=T_{\#} \mu \quad$ puch-forend T-transport uap

$$
g(T(x))=\underbrace{\operatorname{det}(D T(x)) f(x)}_{J T(x)}
$$

$$
\overline{T_{H} \mu(A)=\mu\left(T^{-1}(A)\right)}
$$

Ex

Let $c: X \times Y \rightarrow[0,+\infty)$ be a corliumoos wap.

$$
\left(U_{s-1} d y \quad x-y_{y}=\mathbb{R}^{d}, \quad c(x, y)=|x-y|^{P}\right)
$$

1ssucs:
(i) Transpant upp mang not exist.

$$
-\delta_{x_{1} \rightarrow 1 / 2} \rightarrow \delta_{y_{2}}
$$

$x \longmapsto T(x) \quad$ Mass cont split.
(ii)

$$
\begin{aligned}
& c(x, y)=|x-j| \\
& 1<\cos t\left(T_{n}\right) \leqslant 1+\frac{A}{n}
\end{aligned}
$$

inf anist, lat wincuizer toesurt
(iii) $T_{\# \mu}=r$ casliciont cet

ung rot he conver

$$
\min _{i n} \int c(x, y) d r(x, y)
$$

(Kantorsich Problcon)

$$
P_{x_{\#}} \sigma=\mu
$$

$\Pi(\mu, v)=\left\{\gamma \in P(X, Y) \left\lvert\, \begin{array}{ll}\text { finst nargine of } \gamma & \text { is } \mu \\ \text { second narginal of } \gamma \text { is } r\end{array}\right.\right\}$
$\int \varphi(x) d \gamma(x, y)=\int \varphi(x) d \mu \quad P_{y}+\gamma=\gamma$

$$
\int_{X x y} \varphi(x) d \gamma(x, y)=\int_{\lambda} \varphi(x) d \mu
$$

$$
\int_{x_{x i}^{\prime}} \psi(y) d \gamma(x, y)=\int_{Y} \psi(y) d r
$$

(i) $\operatorname{df}(A \times B)$ yives us hem minh mass we can wove from sAt A के $\operatorname{sA} B$
(We can split the
mass.-)
(ii) If x, y are wetric spores, $\mu \in P_{2}(x), \gamma \in P_{2}(y)$,

$$
\left.\left(P_{2}(x)=\{\mu \in P(x)) \int_{X}|x|^{2} d \mu z+\infty\right\}\right)
$$

and if $c(x, y)=\frac{1}{2}(d(x, y))^{2}$, then (KP)
minimizer is attained.
(iii) This is a convex prolkew.

$$
(1-2) \gamma_{0}+2-\partial_{1} \in \Pi(\mu, v)
$$

This abbes us to talk about a dace problica.

