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Connection between Monge and Kantorovich

Every transport map T induces a transport plan γT , via γT := (id × T )#µ,
whose Kantorovich cost is the same as the Monge cost of T . It can be visualized
as follows:

Thus there are more transport plans than transport maps, so the solution to
the Kantorovich problem is no larger than that of the Monge problem:

(K) = min
γ∈Π(µ,ν)

∫
c(x, y)dγ(x, y) ≤ min

T#µ=ν

∫
c(x, y)dγT (x, y)

= min
T#µ=ν

∫
c(x, T (x))dµ(x) = (M).

In fact, under certain conditions the solutions are the same.

Theorem 1. Suppose µ is of the form dµ(x) = f(x)dx and Ω ⊆ Rd is compact.
Then the Kontorovich problem is a relaxation of the Monge problem. That is,

min
γ∈Π(µ,ν)

∫
Ω×Ω

c(x, y)dγ(x, y) = min
T#µ=ν

∫
Ω

c(x, T (x))dµ(x)

Remark 1. µ being of the form dµ(x) = f(x)dx means µ does not concentrate
mass on d− 1 dimensional subsets.
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Brenier’s Theorem

The cost c(x, y) = |x − y| gives rise to a nice dual formulation. One problem
with this cost is the non-uniqueness of the optimal transport map.

Example 1 (Books on a shelf).

Definition 1. A function u : Rd → R is called “convex” if for every x, y ∈ Rd

and α ∈ [0, 1],
u((1− α)x+ αy) ≤ (1− α)u(x) + αu(y).

Remark 2. Equivalently, a function u : Rd → R is convex if and only if its
Hessian is positive semi-definite.

Example 2. u : R → R, u(x) = x2 is convex.

Theorem 2 (Brenier). Let c(x, y) = ∥x − y∥2 and µ, ν have finite second mo-
ment, i.e.

∫
Rd |x|2dµ(x),

∫
Rd |y|2dν(y) < ∞. Suppose further µ has the form

dµ(x) = f(x)dx. Then there exists a unique optimal transport map T of the
form T = ∇u where u is a convex function. Conversely, if T is a transport map
and T = ∇u then T is optimal.

Remark 3. The condition that dµ(x) = f(x)dx is necessary, for if µ concen-
trates mass on a d − 1 dimensional subset uniqueness fails. Consider d = 2,
µ = 1

2δ(0,0) +
1
2δ(1,1), ν = 1

2δ(0,1) +
1
2δ(1,0).

Discussion of the special case d = 1.
Fact: The derivative of a convex function u : R → R is nondecreasing. Brenier’s
Theorem says the optimal rearrangement of µ into ν will not “cross over itself”.

Extension to Kantorovich problem:
The optimal γ̃ ∈ Π(µ, ν) = {γ : πX#γ = µ, πY#γ = ν} concentrates its mass
on the graph (x, T (x)) of a function T which is the gradient of a convex function
u. Namely this is via γ̃ = (id× T )#µ).
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Example 3.

Translations and Dilations

In Rd, a translation is the gradient of a convex function, namely

Tc(x) = x+ c = ∇
[
1

2
∥x∥2 + c · x

]
.

By Brenier’s Theorem, whenever a translation is a transport map, it is neces-
sarily an optimal map and γT := (id× T )#µ is the optimal transport plan. In
this case one computes that the 2-Wasserstein distance between the original and
translated measure is

W2(µ, Tc#µ) =

(∫
|x− y|2d[(id× Tc)#µ]

)1/2

=

(∫
|x− Tc(x)|2dµ

)1/2

=

(∫
|c|2dµ

)1/2

=|c|

as expected. Similarly scalings can be written as

Ta(x) = ax = ∇
[a
2
∥x∥2

]
,

so the 2-Wasserstein distance between a measure µ and its dilation ν = Ta#µ
is

W2(µ, Ta#µ) =

(∫
|x− y|2d[(id× Ta)#µ]

)1/2

=

(∫
|x− Ta(x)|2dµ

)1/2

=|1− a|
(∫

|x|2dµ
)1/2

.
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