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Connection between Monge and Kantorovich

Every transport map T induces a transport plan vp, via v := (id x T)#u,
whose Kantorovich cost is the same as the Monge cost of T'. It can be visualized
as follows:

Thus there are more transport plans than transport maps, so the solution to
the Kantorovich problem is no larger than that of the Monge problem:
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= min /c(x,T(x))du(x) = (M).

THp=v
In fact, under certain conditions the solutions are the same.

Theorem 1. Suppose i is of the form du(x) = f(x)dr and Q C R is compact.
Then the Kontorovich problem is a relaxation of the Monge problem. That is,

min / c(:v,y)d'y(x,y):Tmin /c(x,T(w))d,u(x)
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Remark 1. u being of the form du(x) = f(x)dz means p does not concentrate
mass on d — 1 dimensional subsets.



Brenier’s Theorem

The cost c(x,y) = |z — y| gives rise to a nice dual formulation. One problem
with this cost is the non-uniqueness of the optimal transport map.

Example 1 (Books on a shelf).

Definition 1. A function u : R* — R is called “convex” if for every x,y € R?
and « € [0, 1],
u((1 - )z + ay) < (1 - a)u(z) + ou(y).

Remark 2. Equivalently, a function u : R4 — R is convex if and only if its
Hessian is positive semi-definite.
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Example 2. u: R = R, u(z) = 2* is conver.

Theorem 2 (Brenier). Let c(z,y) = ||z — y||?> and p,v have finite second mo-
ment, i.e. [pa|z|?dp(z), [a lyl?dv(y) < oo. Suppose further p has the form
du(x) = f(x)dx. Then there exists a unique optimal transport map T of the
form T = Vu where u is a convez function. Conversely, if T is a transport map
and T = Vu then T is optimal.

Remark 3. The condition that du(x) = f(x)dx is necessary, for if u concen-
trates mass on a d — 1 dimensional subset uniqueness fails. Consider d = 2,
p= 3000 + 3001, v = 3001 + 300.0)-

Discussion of the special case d = 1.

Fact: The derivative of a convex function u : R — R is nondecreasing. Brenier’s
Theorem says the optimal rearrangement of p into v will not “cross over itself”.

Extension to Kantorovich problem:

The optimal 4 € II(pu,v) = {v : mx#y = u, my#y = v} concentrates its mass
on the graph (z,T(z)) of a function T which is the gradient of a convex function
u. Namely this is via 7 = (id x T)#u).



Example 3.

Translations and Dilations

In R?, a translation is the gradient of a convex function, namely
L2
T(z)=xz+c=V §||x|| +c-x|.
By Brenier’s Theorem, whenever a translation is a transport map, it is neces-
sarily an optimal map and v := (id X T')#u is the optimal transport plan. In

this case one computes that the 2-Wasserstein distance between the original and
translated measure is

W, TeAp) = (/Iw—yIQd (id x T)#u]>1/2
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as expected. Similarly scalings can be written as
Tu(@) = ax = V [ S ]l2]?] .

so the 2-Wasserstein distance between a measure p and its dilation v = T,#u
is

W, Tuttn) = (/ o — y[2d[(id x Ta)#u]>1/2
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