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These notes were written for a seminar on optimal transport and particle
physics in Summer 2023 at UCSB, organized by Prof. Katy Craig. Most
of the contents within are based off of Sturm’s paper “On the geometry
of metric spaces. I” [2] and Mémoli’s paper “Gromov–Wasserstein Distances
and the Metric Approach to Object Matching” [1]. Basic knowledge of metric
spaces and measure theory are assumed, as well as some familiarity with the
Wasserstein p-distances.

1 Introduction

A few weeks ago Haoqing told us about the Wasserstein p-distances, which give us a
way to compare how close two probability measures on a metric space are. But what
if we want to compare measures on different metric spaces? This isn’t just an issue of
mathematical curiosity—indeed, many problems in object matching can be viewed in
such a context, as seen in Memoli’s paper [1]
The Gromov-Wasserstein distances give us a way to do this. The main idea is that

since the Wasserstein distances allow us to compare measures on the same metric space,
we should turn measures on different metric spaces into measures living in the same
metric space.

2 Background

Our basic objects of study are metric measure spaces:

Definition 2.1 (Metric Measure Space). A metric measure space (mm-space for
short) is a triple (X, d, µ), where (X, d) is a metric space and µ is a Borel measure on
(X, d) (a measure on the Borel σ-algebra of (X, d)) satisfying the following properties:

• The metric space (X, d) is complete (Cauchy sequences converge) and separable
(contains a countable dense subset).
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• The measure µ is locally finite: for any x ∈ X and sufficiently small r > 0 we have
µ(Br(x)) < ∞ (small enough balls have finite measure).

For our purposes we will require that our metric measure spaces are normalized, i.e.,
that µ(X) = 1. Another key concept is that of the support:

Definition 2.2. Given a metric measure space (X, d, µ), the support of µ, denoted
supp[µ], is the set

supp[µ] = {x ∈ X | any open set containing x has positive measure}.

Note that the support is always closed, because its complement is the union of open
sets of measure zero. Essentially, the support is where we actually have measure-theoretic
information in a metric measure space.

Example 2.3. Euclidean space Rn with the usual Euclidean distance and the Lesbesgue
measure is a metric measure space, but unfortunately this measure cannot be normalized.
This measure has support all of Rn.

Example 2.4. Given any (nonempty) metric space (X, d), we can make it a metric
measure space by picking a point x ∈ X and putting a Dirac mass there. In other words,
we give it the measure δx which returns 1 when a measurable set contains x, and 0
otherwise. Note that this is normalized, and has support supp[δx] = {x}.

−2 −1 0 1 2

Figure 1: The metric space [−2, 2] with a Dirac mass at 1.

Example 2.5. One standard example (which we will see later) is to take Rn and put
Dirac masses of weight 1

n+1 on each of the vertices of the standard n-simplex. The
support of this measure is simply n + 1 points all at distance 1 from each other, each
with a weight of 1

n+1 . Note that this is normalized.

Example 2.6. A compact Riemannian manifold with metric and renormalized volume
measure both induced by the Riemannian metric is a normalized metric measure space.
For example, take the rescaled volume measure on Sn.

Whenever we have an object with some structure, we always want to know what it
means for two such structures to be the same:

Definition 2.7. Two metric measure spaces (X1, d1, µ1) and (X2, d2, µ2) are isomorphic
(as mm-spaces) if there exists a map f : supp[µ1] → supp[µ2] which is an isometry and
satisfies

µ2 = f#µ1.
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Here f#µ1 is the pushforward: we have f#µ1(B) = µ1(f
−1(B)) for any Borel set B

in X2.
Finally, an important isomorphism invariant of metric measure spaces is the variance:

Definition 2.8. Let (X, d, µ) be a metric measure space. The variance of (X, d, µ) is

Var(X, d, µ) = inf

∫
X′

d′(x, z)2dµ′,

where the infimum is taken over all metric measure spaces (X ′, d′, µ′) isomorphic to
(X, d, µ), and all choices of basepoint z ∈ X ′.

Remark: Excuse the abuse of notation in using d for both a metric and for integration;
this will continue throughout these notes.
Remark: Note that the quantity

∫
X′ d

′(x, z)2dµ′ is just the second moment of (X ′, d′, µ′),
which Haoqing discussed in his talk.
Finiteness of the variance is an important condition to ensure finiteness of the Gromov-

Wasserstein 2-distance, as we will see later on; we will assume our metric measure spaces
to have finite variance.

3 Gromov-Wasserstein Distances

We will work with the Gromov-Wasserstein 2-distance from here on, but keep in mind
that we can define the Gromov-Wasserstein p-distance for 1 ≤ p < ∞ analogously, and
that many of the following proofs and properties follow similarly. Furthermore, from
now on we require that our mm-spaces be normalized and have finite variance.
First we formalize what it means to make two measures on different metric spaces live

in the same space.

Definition 3.1. Let (X1, d1, µ1) and (X2, d2, µ2) be metric measure spaces. A measure
µ on the product space X1 ×X2 is a measure coupling of µ1 and µ2 if

µ(B ×X2) = µ1(B), µ(X1 ×B′) = µ2(B
′)

for all measurable B ⊆ X1 and B′ ⊆ X2.

Remark: When (X1, d1, µ1) = (X2, d2, µ2) we recover the notion of coupling Haoqing
discussed in his talk.

Definition 3.2. Let (X1, d1, µ1) and (X2, d2, µ2) be metric measure spaces. A metric d
on the disjoint union X1 ⊔X2 is a metric coupling of d1 and d2 if d(x, y) = d1(x, y)
and d(x′, y′) = d2(x

′, y′) for all x, y ∈ supp[µ1] and x′, y′ ∈ supp[µ2].

Now we can define the Gromov-Wasserstein 2-distance:
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Definition 3.3. Let (X1, d1, µ1) and (X2, d2, µ2) be metric measure spaces. The Gromov-
Wasserstein 2-distance between the two spaces is defined to be

dGW,2 ((X1, d1, µ1), (X2, d2, µ2)) = inf

(∫
X1×X2

d(x, y)2dµ

) 1
2

,

where the infimum is taken over all measure couplings µ of µ1, µ2 and metric couplings
d of d1, d2.

We will drop the 2 in the subscript from here on out. The careful reader may note that
this process doesn’t quite involve a common metric measure space that both (X1, d1, µ1)
and (X2, d2, µ2) live in, because the metric coupling d is not a metric on X1 × X2.
However, the following fact takes care of this:

Proposition 3.4. We have

dGW ((X1, d1, µ1), (X2, d2, µ2)) = inf dW (ϕ#µ1, ϕ
′
#µ2),

where the infimum is taken over all metric spaces (X, d) with isometric embeddings
ϕ : supp[µ1] → X and ϕ′ : supp[µ2] → X, and dW is the Wasserstein 2-distance.

Proof. See Lemma 3.3 of [2].

Note that dGW is the infimum of nonnegative numbers, hence is nonegative. Further-
more, it is the infimum of quantities which are symmetric with respect to (X1, d1, µ1)
and (X2, d2, µ2), hence it itself is symmetric. By the alternate definition given in Propo-
sition 3.4., we also see that isomorphic metric measure spaces have Gromov-Wasserstein
distance zero. The triangle inequality follows from placing a clever choice of metric on
the three spaces involved (see Theorem 3.6 in [2]). The distance being nonzero when the
spaces involved are nonisomorphic follows from a comparison with Gromov’s box metric
(see Lemma 3.7 in [2]). Finally, the fact that the Gromov-Wasserstein distance is finite
follows from the triangle inequality and one of the examples in the next section. All this
comes together to show that

Theorem 3.5. The Gromov-Wasserstein distance dGW is a metric on the set of equiv-
alence classes of normalized metric measure spaces with finite variance.

4 Examples

Lemma 4.1. Let (X, d, µ) be a normalized metric measure space with finite variance,
and let (X ′, d′, δx′) be a metric measure space with measure given by a Dirac mass at a
point x′ ∈ X ′. Then we have

dGW

(
(X, d, µ), (X ′, d′, δx′)

)2
= Var(X, d, µ).
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Proof. Let ε1 > 0 be arbitrary, and assume without loss of generality that z ∈ X achieves∫
X d(x, z)2dµ < Var(X, d, µ)+ε1 (since we only have to consider isomorphism classes, we
can take (X, d, µ) to be a representative achieving a value close to the actual variance).
Furthermore, we can assuming without loss of generality that X = supp[µ].
Now take the isometrically embed X in X via the identity id, and supp[δx′ ] = {x′} in

X via ϕ′, x′ 7→ z. It follows that

dW (id# µ, ϕ′
#δx′)2 = dW (µ, δz)

2 ≤
∫
X
d(x, z)2dµ < Var(X, d, µ) + ε1.

Since ε1 > 0 is arbitrary, we have

dGW

(
(X, d, µ), (X ′, d′, δx′)

)2 ≤ dW (id# µ, ϕ#δx′)2 ≤ Var(X, d, µ).

On the other hand, any coupling with a delta distribution must end up being a
product measure, so any integral for dW (ϕ#µ, ϕ

′
#δx′) must end up being of the form∫

Y d(y, z)2d(ϕ#µ)*, where (Y, dY , ϕ#µ) is isomorphic to (X, d, µ). Therefore, Var(X, d, µ) ≤
(dW (id# µ, ϕ′

#δx′) + ε2)
2 for any ε2 > 0. It follows that

Var(X, d, µ) ≤ dW (id# µ, ϕ′
#δx′)2,

and the desired equality follows.
*Technically we should be taking the integral over a space Y containing an isometri-

cally embedded copy of X and a distinguished point y corresponding to x′, but it is clear
that having y outside of the copy of X always results in a larger integral (the distances
we are integrating are larger), so we can just assume y is inside the copy of X, and
disregard everything outside.

Given the triangle inequality, one consequence of this lemma is that dGW is bounded
for our class of metric measure spaces, since we have

dGW

(
(X, d, µ), (X ′, d′, µ′)

)
≤ dGW

(
(X, d, µ), (X ′, d′, δx′)

)
+ dGW

(
(X ′, d′, δx′), (X ′, d′, µ′)

)
=

√
Var(X, d, µ) +

√
Var(X ′, d′, µ′),

and the variances are finite by assumption.
The following two examples are from Sturm’s paper [2], and involve the notion of

Gromov-Wasserstein convergence: a sequence (Xn, dn, µn) of metric measure space
Gromov-Wasserstein converges to a metric measure space (X, d, µ) if the numbers
dGW ((Xn, dn, µn), (X, d, µ)) converge to 0. It turns out that the space of all isomorphism
classes of normalized, finite variance metric measure spaces is actually complete under
the Gromov-Wasserstein distance.

Example 4.2. For each n, let Xn = ( 1nZ∩ [0, 1])k, with the usual metric and normalized
counting measure. In other words, Xn is a (n+1)× (n+1) grid of evenly spaced points

in the unit square, each with a weight of 1
(n+1)2)

. We have (Xn, dn, µn)
GW−−→ (X, d, µ),

where (X, d) is [0, 1]k with the usual metric and µ is the Lesbesgue measure.
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This is an example of a dimensional increase: the spaces in the limit are all discrete
and thus 0-dimensional, but the limit is k-dimensional.

Example 4.3. Let X be a finite graph living in R3, let d be the graph metric on X, and
give X the normalized one-dimensional Lesbesgue measure µ. Now, for each n, let Xn be
the closed 1

n -neighborhood of X, and give Xn the geodesic metric and three-dimensional

Lesbesgue measure. Then (Xn, dn, µn)
GW−−→ (X, d, µ).

The same holds if we take Xn to be the points at distance exactly 1
n , and give this shell

the induced geodesic metric and two-dimensional Lesbesgue measure.

This is an example of dimensional collapse: the spaces in the limit are all three (or
two) dimensional, but the limit is one dimensional.

5 Applications

Example 5.1. As mentioned previously, Gromov-Wasserstein distance has applications
to object matching: objects can be approximated by finite metric measure spaces, and then
the Gromov-Wasserstein distance can tell us how close the resulting approximations are
to each other. See Mémoli’s paper [1] for more.

Example 5.2. Another potential application (as communicated to me by Prof. Katy
Craig) is the example of jets in particle colliders Jessica spoke about in her talk. Since the
orientation of the jet is not so important, Gromov-Wasserstein can be more useful here
than regular Wasserstein, because regular Wasserstein would assign a cost to rotating a
jet. More generally, Gromov-Wasserstein can be better in a ”change-of-coordinates” sit-
uation, where we don’t care if two objects are different via a measure-preserving isometry
of the same space.

The issue with both these (more practical) examples is that Gromov-Wasserstein dis-
tance is very hard to compute: even for finite metric measure spaces it is NP-hard.
Mémoli has an alternate formulation (not quite equivalent) of the distance in his paper
[1] which seems more amenable to computation.
Finally, an application to other mathematics.

Example 5.3. In geometry lower bounds on Ricci curvature are quite useful, and show
up in a lot of big theorems (for example Gromov’s precompactness theorem). One can
define a notion of curvature for metric measure spaces involving Wasserstein distance,
which shares nice properties with the Ricci curvature. In particular, lower bounds on this
synthetic notion of Ricci curvature agree with lower bounds on Ricci curvature in the case
of Riemannian manifolds, and can be used in place of Ricci curvature in more general
settings. It turns out that Gromov-Wasserstein is in some sense a ”correct” notion of
distance for this notion of curvature, because Gromov-Wasserstein convergence preserves
lower bounds for this curvature (under suitably nice conditions). See Sturm’s paper [2]
for more.
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