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Sampling Problem

Goal: We want to sample from a probability distribution ⇢1 2 P(Rd
).

We assume the distribution is defined by

⇢1 =
1

Z
e�V ,

where the potential V : Rd ! R is known, but the normalization constant Z > 0 is

unknown.
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Popular Sampling Algorithm

A popular sampling algorithm is the Langevin Dynamics.

You choose a random initial value X0 and simulate the following SDE until a sampling

time T > 0

dXt = rV (Xt) dt +
p
2 dBt ,

where Bt is Brownian motion.

The law µt of Xt is governed by a Fokker-Planck equation

@tµt = div(µt r[log(µt) + V ]).
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Challenge of Langevin Dynamics

The Log-Sobolev inequality states

� KL(µt || ⇢1)| {z }

=

Rd
µt ln

✓
µt

⇢1

◆
dx


Rd

|rµt + µtrV |2

µt
dx = � d

dt
KL(µt || ⇢1)

If it holds, then Langevin Dynamics converges exponentially

KL(µt || ⇢1)  e��tKL(µ0 || ⇢1)

The Log-Sobolev inequality holds if V is strongly convex

r2V < � id
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Stein Variational Gradient Descent [Liu and Wang, 2016]

SVGD is governed by a positive definite interaction kernel K : Rd ⇥ Rd ! R.

Given is some initial distribution of particles X 1
0 , . . . ,X

N
0 2 Rd

.

SVGD has deterministic particle dynamics

X i
n+1 := X i

n + "n

NX

j=1

(ryK )(X i
n, X

j
n)� K (X i

n, X
j
n)rV (X j

n).
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Computational Examples

Normal Gaussian
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Computational Examples

Mixture of Gaussians
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Computational Examples

Banana Distribution
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Mean-field limit

Formal computations in [Liu, 2017] show that if N ! 1 and " ! 0, then the following

evolution of distribution of particles ⇢t holds true

@t⇢(x) = div

✓
⇢(x)

Rd
K (x , y)(r⇢(y) + ⇢(y)rV (y)) dy

◆
.
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Comparison

Particle evolution for Langevin dynamics

@tµt = div(µtr[log(µt) + V ]).

Particle density evolution for SVGD

@t⇢(x) = div

✓
⇢(x)

Rd
K (x , y)r[log(⇢(y)) + V (y)]⇢(y) dy

◆
.
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Stein-log-Sobolev inequality

The Stein-log-Sobolev inequality states

� KL(⇢t || ⇢1)  D2
(⇢t || ⇢1) = � d

dt
KL(⇢t || ⇢1),

with dissipation

D2
(⇢t || ⇢1) :=

Rd Rd
[r⇢t + ⇢trV ](x) K (x , y) [r⇢t + ⇢trV ](y) dy dx ,

If it holds, then SVGD converges exponentially

KL(⇢t || ⇢1)  e��tKL(⇢0 || ⇢1)
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Main Theorem [Carrillo et al., 2024]

Ansatz form [Duncan et al., 2023]

K (x , y) = eV (x)�V0(x)
2 k(x � y)eV (y)�V0(y)

2 .

Su�cient criteria for SLSI

• V � V0 for V0(x) = ↵|x |2 + �,

• k 2 L1(Rd
) + L2(Rd

),

• There exists two constants C0,C1 � 1 such that

1

C0

1

1 + |⇠|2  k̂(⇠)  C1
1

1 + |⇠|2 .
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Existence of weak solution [Carrillo et al., 2024]

There exists a distributional solution ⇢ 2 C 0
([0,1),P(Rd

)), whenever

V 2 C 1
(Rd

) \ Hm
loc(Rd

) for some m > d
2 , for

@t⇢t = div
⇣
⇢te

V�V0
2 k ⇤

h
(r⇢t + ⇢trV )eV�V0

2

i⌘
.

We have exponential decay and energy dissipation inequality

KL(⇢t || ⇢1)  e��tKL(⇢0 || ⇢1),

KL(⇢t || ⇢1) +

t

0
D2

(⇢s || ⇢1) ds  KL(⇢0 || ⇢1).
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From non-local to local

By concentrating k to a Dirac measure, there exists a distributional solution

% 2 C 0
([0,1),P(Rd

)) to

@t%t = div
⇣
%2t e

2V�V0 r(ln(%t) + V )

⌘
.

We have exponential decay and energy dissipation inequality

KL(%t || %1)  e��tKL(%0 || %1),

KL(%t || %1) +

t

0
|r%s + %srV |2e2V�V0 ds  KL(%0 || %1).
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Outlook

• Derive and quantize the mean-field limit

• Extend theory to V � ↵|x |q + � for q 2 (0, 2)

• Implement numerically
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Questions

Thank you for your attention
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Questions

Stein-log-Sobolev constant [Carrillo et al., 2024]

The Stein-log-Sobolev constant has the form

� = �0 (↵ ^ 1) e�
1

C 2

1

ke�V kL1
,

where �0 > 0 is some constant independent of dimension d , and we recall that ↵ and

� determine V0, and C is used for the lower bound of k̂ .
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Review of Wasserstein Gradient Flows

Many di↵usion PDE’s (or equivalently di↵usion processes) have a

Wasserstein gradient flow structure.

The simplest examples describe

systems di↵using in the presence or absence of some potential:

Heat Fokker Planck

SDE dXt =
p
2dBt dXt = �rV (Xt)dt +

p
2dBt

PDE @tµ = �µ @tµ = div(µV )

WGF E(⇢) = Ent(⇢) =
R
⇢ log ⇢ F(⇢) =

R
⇢ log ⇢+

R
Vdµ

Upshot:

• We can construct solutions via the JKO scheme

• We can establish properties of long time behavior for “nice

functionals” (e.g. V �-convex).
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Exact Renormalization Groups

Let’s consider a statistical model of a fluid, and suppose we model it with

• a lattice X = ("Zd)/(LZd) (discretized space)

• “states” of our model, ⇢ 2 RX (function/density on X )

The states look qualitatively di↵erent at di↵erent scales.

Figure 1: Intuition for small scale vs large scale states of a system of particles

described by a Gaussian at large scale. Credit to Amir Masoud Sefidian

1. On the scale of molecules (" ⇡ 0), states have largre spikes.

2. At larger scales (" >> 0) states are averaged ) smoother.
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Exact Renormalization Groups

Key observation: small fluctuations in density that we’d observe at very

small scales will be qualitatively irrelevant at larger scales.

Let’s study the distribution P⇤ of all of possiblestates at a given scale

⇤�1.

The ERG is the “flow” ⇤ 7! P⇤ (e.g. something like a Fokker-Planck).

Upshot: Knowing how the distribution of states depends on scale )
computing phase transitions, etc.
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Lattice Polchinski ERG Flow

For our mathematical model (as in [1]), we’ll consider

• a lattice X = (⇤(t)�1Zd)/(LZd), ⇤(t) = ⇤0e�t (here " = ⇤�1).

• corresponding states ' 2 RX

• a sequence of symmetric p.d. matrices Ct =
R t
0 Ċsds and their

associated Gaussian measures PCt = N (0,Ct)

• A series of inner products hx , yiĊt
:= hx , Ċ�1

t yi.
• The di↵erential operators associated to hx , yiĊt

: �Ċt
, rĊt

, etc.

Intuition:

• We imagine “flowing” through scales ⇤(t)�1 at time t.

• The measures PCt are the weights we use to “average” out small

fluctations at each scale t.

• The inner product hx , yiĊt
influences the geometry of RX at each

scale.

Example: the heat flow corresponds to Ct = t Id, so Ċt = Id.
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0 Ċsds and their

associated Gaussian measures PCt = N (0,Ct)

• A series of inner products hx , yiĊt
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Lattice Polchinski ERG Flow

Consider an initial potential V0 : RX ! R and the assoiated measure �0

given by

E�0 [F ] / EC1 [e�V0(⇣)F (⇣)]

The Polchinski ERG evolves the potential & measure through di↵erent

scales:

Suppose that 0 < s < t and F : RN ! R is bounded &

measurable.

• The renormalized potential at time t is given by

Vt(') = � logECt [e
�V0('+⇣)]

• The Polchinski semigroup (starting at time s and ending at time t)

is given by

Ps,tF (') = eVt(')ECt�Cs [e
�Vs ('+⇣)F ('+ ⇣)]

• The renormalized measure ⌫t given by

E�t [F ] = Pt,1F (0) = eV1(0)EC1�Ct [e
�Vt(⇣)F (⇣)]
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Insight: Connection with Fokker-Planck Variant

Recall that for a usual Wasserstein gradient flow, � : [0,T ] ! P2(Rd),

the measures solves the following continuity eqation in a weak sense:

@t�t = div

✓
�tr

�F
�p

(�t)

◆
= �rW2F(�t)

By Itô’s formula, we can show that the renormalized measures in the

Polchinski flow satisfy Polchinski’s equation:

@t�t = divĊt

✓
�trĊt

�Ft

�p
(�t)

◆

= �rW2,ĊtFt(�t)

where Ft(⇢) = KL(⇢||⇡t) for some curve of measures ⇡t .

Upshot: the Polchinski flow has a gradient flow structure where our

metric and functional both depend on time.
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Construction of Gradient Flows via JKO

Given

• initial data �0

• ⌧ > 0 and a partition of [0,T ] {0, ⌧, 2⌧, . . . n⌧  T < (n + 1)⌧}

we iteratively solve

�⌧
0 = �0

�⌧
k+1 = argmin

�
F(�) +

1

2⌧
W 2

2 (�,�
⌧
k )

For “nice” functionals such as

F(⇢) =

Z
⇢ log ⇢+

Z
Vdµ, with V � convex

• �⌧ converges to a unique solution to our PDE as ⌧ ! 0

• converge to their stationary state exponentially in time
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Gradient Flows on Time Dependent Metric Measure Spaces

Despite the added time dependencies, we can tweak the JKO scheme in a

simple way. Given

• initial data �0

• ⌧ > 0 and a partition of [0,T ] {0, ⌧, 2⌧, . . . n⌧  T < (n + 1)⌧}

we can iteratively solve

�⌧
0 = �0

�⌧
k+1 = argmin

�
F(k+1)⌧ (�) +

1

2⌧
W 2

2,(k+1)⌧ (�,�
⌧
k )

where Ft(⇢) = KL(⇢||⇡t)

If our potentials Vt and metrics Ċt evolve

“nicely” (e.g. some uniform Lipschitz conditions in terms of time and

boundedness, convexity of potentials, etc.) [2]

• the curve limit exists, is unique, and solves Polchinski’s

equation

• long time behavior can be determined (may not converge to

equilibrium)
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Long Term Goals

The previous results only apply under extremely restrictive assumptions

(e.g. the so called “free fields”) on a lattice.

• Physicists want to understand more complicated potentials such as

the '4 model or continuum Sine-Gordon model. [3]

• The dream is to understand what happens as the lattice approaches

Rd e.g. ⇤, L ! 1. [4] Can we say something in this context?

• The continuum case has only been successfully studied by singular

SPDE techniques; can we relate our approach to theirs?
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Landau equation

• The Landau equation models the distribution of charged particles in collisional
plasmas:

@t f + v ·rx f + F ·rv f = QL(f , f ) ,

QL(f , f ) = rv ·
Z

Rd
A(v�v⇤) (f (v⇤)rv f (v)�f (v)rv⇤ f (v⇤)) dv⇤ .

with the collision kernel A(z) = C� |z |�+2
⇣
Id � z⌦z

|z|2

⌘
. The physically relevant case is

d = 3, � = �3, often referred to as the Coulomb case.

• The Landau operator QL(f , f ) conserves mass, momentum, energy, and is entropy
dissipative.

• Computational di�culty of QL(f , f ): high-dimensionality, multi-scale, strong
nonlinearity and non-locality, structure-preserving.
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Blob method [Carrillo et’al 20’]

• Continuity equation form: @t f +r · (f U[f ]) = 0, where the velocity field

U[f ] = �
Z

Rd
A(v � v⇤)

✓
r�H
�f

�r⇤

�H⇤

�f⇤

◆
f⇤dv⇤ , H =

Z

Rd
f log f dv .

• A particle representation: f N(v) =
PN

i=1 wi�(v � v i (t)).

• Entropy regularization: H" =
R
Rd (f ⇤  ") log(f ⇤  ")dv , where  " is a mollifier.

• Evolution of particles:

d
dt

v i (t) = �
NX

j=1

wjA(v i (t)� v j(t))

✓
r�HN

"

�f
(v i (t))�r�HN

"

�f
(v j(t))

◆
,

r�HN
"

�f
(v i (t)) =

Z

Rd
r "(v i (t)� v) log

 
X

k

wk "(v � v k(t))

!
dv .

Pros: structure-preserving.
Cons: explicit scheme; kernel density estimation; computational cost is O(N2).
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Score-based particle method

• A “Log” form of continuity equation:

@t f +rv · (U[f ]f ) = 0 ,

U[f ] = �
Z

Rd
A(v � v⇤)(rv log f (v)| {z }

score

�rv⇤ log f (v⇤))f⇤dv⇤ .

• Learn score via the score-matching loss:

sn✓(v) 2 argmin
✓

1
N

NX

i=1

|s✓(v n
i )|2 + 2r · s✓(v n

i )

• Update particles: v n+1
i = v n

i ��t 1
N

PN
j=1 A(v

n
i � v n

j )[sn✓(v n
i )� sn✓(v n

j )].

• Update density (no kernel density estimation):

ln+1
i =��t

1
N

NX

j=1

rv i ·{A(v
n
i �v n

j )[s✓(v n
i )�s✓(v n

j )]} , f n+1(v n+1
i ) = f n(v n

i )/ exp (l
n+1
i ) .
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Landau equation as a gradient flow [Carrillo et’al 24’]

• Heat equation: @t f = �f = r ·
�
fr �H

�f

�
. The entropy dissipation rate is

d
dt

Z

Rd
f log f dv = �

Z

Rd

����r
�H
�f

����
2

f dv .

• 2-Wasserstein metric:

d2
W2

(f0, f1) := inf
f ,u

Z 1

0

Z

Rd
|u|2f dvdt ,

s.t. @t f +r · (uf ) = 0 , f (0, ·) = f0 , f (1, ·) = f1 .

• Landau equation: @t f = r ·
⇣
f
R
Rd A(v � v⇤)(r �H

�f �r⇤
�H⇤
�f⇤

)f⇤dv⇤

⌘
. The entropy

dissipation rate is

d
dt

Z

Rd
f log f dv =�1

2

ZZ

R2d
(r�H

�f
�r⇤

�H⇤

�f⇤
)A(v �v⇤)(r

�H
�f

�r⇤

�H⇤

�f⇤
)↵⇤dvdv⇤ .

• Landau metric:

d2
L(f0, f1) := inf

f ,u

1
2

Z 1

0

ZZ

R2d
(u � u⇤)A(v � v⇤)(u � u⇤)↵⇤dvdv⇤dt ,

s.t. @t f +r ·

f

✓Z

Rd
A(v � v⇤)(u � u⇤)f⇤dv⇤

◆�
= 0 , f (0, ·) = f0 , f (1, ·) = f1 .
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Dynamic JKO scheme

As a result, the Landau equation can be viewed as the gradient flow of entropy H with
respect to the metric dL. Therefore, one can construct a weak solution by the
Jordan-Kinderlehrer-Otto (JKO) scheme:

f 0 = f (0, ·) , f n+1 2 argmin
f

h
d2
L(f , f

n) + 2�tH(f )
i
.

Numerically, we use the dynamic JKO scheme: given f n, solve f n+1 := f (1, ·) by
8
>><

>>:

inf
f ,u

1
2

Z 1

0

ZZ

R2d
|u � u⇤|2A↵⇤dvdv⇤dt + 2�tH(f (1, ·)) ,

s.t. @t f +r ·

f

✓Z

Rd
A(v � v⇤)(u � u⇤)f⇤dv⇤

◆�
= 0 , f (0, ·) = f n .
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Lagrangian dynamic JKO scheme

Given f n, solve the optimal flow map T n+1
t by

8
>>>>>>><

>>>>>>>:

inf
u

1
2

Z 1

0

ZZ

R2d
|u(t,Tt(v))�u(t,Tt(v⇤))|2Af nf n⇤ dvdv⇤dt�2�t

Z

Rd
log | detrvT1(v)|f ndv

s.t.
d
dt

Tt(v) =
Z

Rd
A(Tt(v)�Tt(v⇤))[u(t,Tt(v))�u(t,Tt(v⇤))]f

n
⇤ dv⇤

d
dt

log | detrvTt(v)| = rTt (v) ·
Z

Rd
A(Tt(v)�Tt(v⇤))[u(t,Tt(v))�u(t,Tt(v⇤))]f

n
⇤ dv⇤

Then we obtain f n+1 := T1
n+1
# f n.
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JKO-based particle method

• Algorithm: Given {v n
i }Ni=1 and {f n(v n

i )}Ni=1, solving the following variational problem:

8
>>>>>>>>>>><

>>>>>>>>>>>:

inf
u

1
2N2

NX

i=1

NX

j=1

Z 1

0

|u(t, v i (t))�u(t, v j(t))|2Adt �
2⌧
N

NX

i=1

`i (1) ,

s.t.
dv i

dt
=

1
N

NX

j=1

A(v i (t)�v j(t))[u(t, v i (t))�u(t, v j(t))] , v i (0) = v n
i ,

d`i
dt

=
1
N

NX

j=1

rv i ·{A(v i (t)�v j(t))[u(t, v i (t))�u(t, v j(t))]} , `i (0) = 0 .

Then compute v n+1
i = v i (1) and f n+1(v n+1

i ) = f n(v n
i )/ exp(`i (1)).

• Implementation: Neural network approximation for u; flexible inner time
discretization; stochastic optimization and random batch particle method
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Numerical experiments—score

(a) Time evolution of the
entropy decay rate.

(b) Density visualization at
particle locations.

(c) Computational time of
obtaining “score” on GPU
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Numerical experiments–JKO

(a) Comparison between JKO-based and score-based particle methods with
varying time step sizes in strong collision regime.

References:
[1] Y. Huang and L. Wang, A score-based particle method for homogeneous Landau
equation, Journal of Computational Physics, (2025), p. 114053.
[2] Y. Huang and L. Wang, JKO for Landau: a variational particle method for
homogeneous Landau equation, https://arxiv.org/abs/2409.12296.
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Mean-field interacting particle systems

We consider a system of N particles on the one-dimensional torus

T = R/2fiZ by,

d◊i =
K
N

Nÿ

j=1
ÒW (◊i ≠ ◊j) dt + dBi , 1 Æ i Æ N,

where W is a T-periodic interaction function, (Bi)N
i=1 are independent

Brownian motions, and K > 0 is the interaction strength parameter.
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Statistical perspective

We aim to understand the behavior of this interacting particle systems

where N ∫ 1. For example, when modeling particles in gas, we have

N ¥ 10
23

(Avogadro’s number). Due to the large system size N, its

nonlinearity, and the coupling between particles, tracking all individual

trajectories become computationally infeasible.

Key idea
Analyze the approximate dynamics of a single particle from a statistical

point of view.

We study the limiting behavior of the empirical measure

d‹N,t =
1

N
Nÿ

i=1
d”◊i (t),

as N æ Œ.
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Mean-field equation

For a smooth interaction W œ CŒ
(T), we obtain the mean-field limit

‹N,t æ ‹t , weakly as N æ Œ,

where ‹t is absolutely continuous with a smooth density qt(◊), which

solves the McKean-Vlasov equation (mean-field equation)

ˆtqt =
1

2
�qt ≠ K Ò

1
qt Ò(W ú qt)

2
.
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Linearized McKean-Vlasov equation

Suppose q œ C2
(T) is a stationary solution of the McKean-Vlasov

equation, i .e.

0 =
1

2
qÕÕ ≠ K

1
q(W Õ ú q)

2Õ
.

Goal
Understand in which situation a solution converges to a stationary state q.

The first step is to study dynamics when the initial condition is a

perturbation of q. Consider the evolution of the perturbation

ut(◊) = qt(◊) ≠ q(◊). Then it follows

ˆtut(◊) = Lqut(◊) ≠ K
1
ut(W Õ ú ut)

2Õ
.
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Here, Lq is the linear operator defined by

Lqu =
1

2
uÕÕ ≠ K

1
q(W Õ ú u) + u(W Õ ú q)

2Õ
.

When the initial perturbation u0 is su�ciently small, then we may only

consider the linear term in the equation as,

ˆtut(◊) = Lqut(◊).

This is the linearized McKean-Vlasov equation at the stationary

solution q, which is the primary object in this talk.
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Free energy

The McKean-Vlasov equation can be understood as a gradient flow for the

free energy functional F with respect to the Wasserstein-2 distance on the

space of probability measures with finite second moments as,

ˆtqt = Ò
5
qt Ò

1”F(qt)
”qt

26
,

where ”F/”q is L2
Fréchet derivative of the functional F . The free energy

F is defined by

F(q) =
1

2

⁄
q log q d◊ ≠ K

2

⁄
q(W ú q) d◊.

Therefore, a critical point of F is equivalent to a stationary solution of the

McKean-Vlasov equation.
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Phase transition

For smooth attractive interaction W , a phase transition occurs, i .e. there

exists a critical interaction strength Kc > 0 such that

1 For K < Kc , the uniform distribution qunif = (2fi)
≠1

is the unique

minimizer of the free energy F .

2 For K > Kc , there exists a non-uniform minimizer q ”= qunif of F .

Remark. By the continuity of F , the uniform distribution qunif remains a

minimizer when K = Kc .
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Kuramoto model
The Kuramoto model corresponds to the the interaction potential

W (◊) = cos ◊.

Let q(◊) be a stationary solution of the McKean-Vlasov equation. Defining

its first Fourier coe�cient as r =
s q(Ï) cos Ï dÏ, the stationary solution

takes the form

q(◊) =
exp(2Kr cos ◊)s

exp(2Kr cos ◊) d◊
,

where r = r(K ) solves the self-consistency equation

r =

s
cos ◊ exp(2Kr cos ◊) d◊s

exp(2Kr cos ◊) d◊
.

Equivalently, r is a critical point of (parameterized) free energy functional

FK (r) = Kr2 ≠ log

1
1

2fi

⁄
exp(2Kr cos ◊) d◊

2
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Figure: Parameterized free energy FK (r) for di�erent K œ {0.8, 1, 1.2}.
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Kuramoto-Daido model

Kuramoto-Daido model was introduced by Daido (1995); Daido (1996),

with the interaction potential

W (◊) = cos ◊ + m cos 2◊, m > 0.

Daido proposed the model to study multibranch synchronization

phenomena, which involve interactions through multiple Fourier modes.

Through numerical simulations and heuristic arguments, he demonstrated

the occurrence of phase transitions. Since then, the Kuramoto-Daido

model has been studied in physics literature Hansel-Mato-Meunier (1993);

Komarov-Pikovsky (2014); Cobero-Politi-Rosenblum (2016).

Remark. For m < 0, this model has Kc = 1, as in the Kuramoto model,

analyzed by Vukadinovic (2023).
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Phase Transition in the uniqueness of the stationary solution
There exists a uniform constant mú œ (1, 2) such that

1 For m œ [0, 1/2], Kc = 1 and the transition is continuous.

2 For m œ (1/2, 1], Kc < 1 and the transition is discontinuous.

3 For m œ (1, mú), Kc < m≠1
and the transition is discontinuous.

4 For m = mú, Kc = m≠1
and the transition is discontinuous.

5 For m œ (mú, Œ), Kc = m≠1
and the transition is continuous.

Linear stability at the non-uniform stationary solution q
Assume K > 1 and m œ (0, 8.568 ◊ 10

≠4
]. Then the spectrum of linearized

McKean-Vlasov operator Lq consists solely of pure points lying in (≠Œ, 0],
and it includes the eigenvalue 0 whose one-dimensional eigenspace is

spanned by qÕ
. Moreover, the spectral gap is bounded below by

gap(Lq) Ø C ,

where the positive constant C is a function of K , m.
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Thank you for your attention.
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Landau equation

• The Landau equation models the distribution of charged particles in collisional
plasmas:

@t f + v ·rx f + F ·rv f = QL(f , f ) ,

QL(f , f ) = rv ·
Z

Rd
A(v�v⇤) (f (v⇤)rv f (v)�f (v)rv⇤ f (v⇤)) dv⇤ .

with the collision kernel A(z) = C� |z |�+2
⇣
Id � z⌦z

|z|2

⌘
. The physically relevant case is

d = 3, � = �3, often referred to as the Coulomb case.

• The Landau operator QL(f , f ) conserves mass, momentum, energy, and is entropy
dissipative.

• Computational di�culty of QL(f , f ): high-dimensionality, multi-scale, strong
nonlinearity and non-locality, structure-preserving.
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Blob method [Carrillo et’al 20’]

• Continuity equation form: @t f +r · (f U[f ]) = 0, where the velocity field

U[f ] = �
Z

Rd
A(v � v⇤)

✓
r�H
�f

�r⇤

�H⇤

�f⇤

◆
f⇤dv⇤ , H =

Z

Rd
f log f dv .

• A particle representation: f N(v) =
PN

i=1 wi�(v � v i (t)).

• Entropy regularization: H" =
R
Rd (f ⇤  ") log(f ⇤  ")dv , where  " is a mollifier.

• Evolution of particles:

d
dt

v i (t) = �
NX

j=1

wjA(v i (t)� v j(t))

✓
r�HN

"

�f
(v i (t))�r�HN

"

�f
(v j(t))

◆
,

r�HN
"

�f
(v i (t)) =

Z

Rd
r "(v i (t)� v) log

 
X

k

wk "(v � v k(t))

!
dv .

Pros: structure-preserving.
Cons: explicit scheme; kernel density estimation; computational cost is O(N2).
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Score-based particle method

• A “Log” form of continuity equation:

@t f +rv · (U[f ]f ) = 0 ,

U[f ] = �
Z

Rd
A(v � v⇤)(rv log f (v)| {z }

score

�rv⇤ log f (v⇤))f⇤dv⇤ .

• Learn score via the score-matching loss:

sn✓(v) 2 argmin
✓

1
N

NX

i=1

|s✓(v n
i )|2 + 2r · s✓(v n

i )

• Update particles: v n+1
i = v n

i ��t 1
N

PN
j=1 A(v

n
i � v n

j )[sn✓(v n
i )� sn✓(v n

j )].

• Update density (no kernel density estimation):

ln+1
i =��t

1
N

NX

j=1

rv i ·{A(v
n
i �v n

j )[s✓(v n
i )�s✓(v n

j )]} , f n+1(v n+1
i ) = f n(v n

i )/ exp (l
n+1
i ) .
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Landau equation as a gradient flow [Carrillo et’al 24’]

• Heat equation: @t f = �f = r ·
�
fr �H

�f

�
. The entropy dissipation rate is

d
dt

Z

Rd
f log f dv = �

Z

Rd

����r
�H
�f

����
2

f dv .

• 2-Wasserstein metric:

d2
W2

(f0, f1) := inf
f ,u

Z 1

0

Z

Rd
|u|2f dvdt ,

s.t. @t f +r · (uf ) = 0 , f (0, ·) = f0 , f (1, ·) = f1 .

• Landau equation: @t f = r ·
⇣
f
R
Rd A(v � v⇤)(r �H

�f �r⇤
�H⇤
�f⇤

)f⇤dv⇤

⌘
. The entropy

dissipation rate is

d
dt

Z

Rd
f log f dv =�1

2

ZZ

R2d
(r�H

�f
�r⇤

�H⇤

�f⇤
)A(v �v⇤)(r

�H
�f

�r⇤

�H⇤

�f⇤
)↵⇤dvdv⇤ .

• Landau metric:

d2
L(f0, f1) := inf

f ,u

1
2

Z 1

0

ZZ

R2d
(u � u⇤)A(v � v⇤)(u � u⇤)↵⇤dvdv⇤dt ,

s.t. @t f +r ·

f

✓Z

Rd
A(v � v⇤)(u � u⇤)f⇤dv⇤

◆�
= 0 , f (0, ·) = f0 , f (1, ·) = f1 .
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Dynamic JKO scheme

As a result, the Landau equation can be viewed as the gradient flow of entropy H with
respect to the metric dL. Therefore, one can construct a weak solution by the
Jordan-Kinderlehrer-Otto (JKO) scheme:

f 0 = f (0, ·) , f n+1 2 argmin
f

h
d2
L(f , f

n) + 2�tH(f )
i
.

Numerically, we use the dynamic JKO scheme: given f n, solve f n+1 := f (1, ·) by
8
>><

>>:

inf
f ,u

1
2

Z 1

0

ZZ

R2d
|u � u⇤|2A↵⇤dvdv⇤dt + 2�tH(f (1, ·)) ,

s.t. @t f +r ·

f

✓Z

Rd
A(v � v⇤)(u � u⇤)f⇤dv⇤

◆�
= 0 , f (0, ·) = f n .
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Lagrangian dynamic JKO scheme

Given f n, solve the optimal flow map T n+1
t by

8
>>>>>>><

>>>>>>>:

inf
u

1
2

Z 1

0

ZZ

R2d
|u(t,Tt(v))�u(t,Tt(v⇤))|2Af nf n⇤ dvdv⇤dt�2�t

Z

Rd
log | detrvT1(v)|f ndv

s.t.
d
dt

Tt(v) =
Z

Rd
A(Tt(v)�Tt(v⇤))[u(t,Tt(v))�u(t,Tt(v⇤))]f

n
⇤ dv⇤

d
dt

log | detrvTt(v)| = rTt (v) ·
Z

Rd
A(Tt(v)�Tt(v⇤))[u(t,Tt(v))�u(t,Tt(v⇤))]f

n
⇤ dv⇤

Then we obtain f n+1 := T1
n+1
# f n.
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JKO-based particle method

• Algorithm: Given {v n
i }Ni=1 and {f n(v n

i )}Ni=1, solving the following variational problem:

8
>>>>>>>>>>><

>>>>>>>>>>>:

inf
u

1
2N2

NX

i=1

NX

j=1

Z 1

0

|u(t, v i (t))�u(t, v j(t))|2Adt �
2⌧
N

NX

i=1

`i (1) ,

s.t.
dv i

dt
=

1
N

NX

j=1

A(v i (t)�v j(t))[u(t, v i (t))�u(t, v j(t))] , v i (0) = v n
i ,

d`i
dt

=
1
N

NX

j=1

rv i ·{A(v i (t)�v j(t))[u(t, v i (t))�u(t, v j(t))]} , `i (0) = 0 .

Then compute v n+1
i = v i (1) and f n+1(v n+1

i ) = f n(v n
i )/ exp(`i (1)).

• Implementation: Neural network approximation for u; flexible inner time
discretization; stochastic optimization and random batch particle method
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Numerical experiments—score

(a) Time evolution of the
entropy decay rate.

(b) Density visualization at
particle locations.

(c) Computational time of
obtaining “score” on GPU
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Numerical experiments–JKO

(a) Comparison between JKO-based and score-based particle methods with
varying time step sizes in strong collision regime.

References:
[1] Y. Huang and L. Wang, A score-based particle method for homogeneous Landau
equation, Journal of Computational Physics, (2025), p. 114053.
[2] Y. Huang and L. Wang, JKO for Landau: a variational particle method for
homogeneous Landau equation, https://arxiv.org/abs/2409.12296.
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Mean-field interacting particle systems

We consider a system of N particles on the one-dimensional torus

T = R/2fiZ by,

d◊i =
K
N

Nÿ

j=1
ÒW (◊i ≠ ◊j) dt + dBi , 1 Æ i Æ N,

where W is a T-periodic interaction function, (Bi)N
i=1 are independent

Brownian motions, and K > 0 is the interaction strength parameter.

Kyunghoo Mun (CMU) Phase Transitions and Linear Stability for the Kuramoto-Daido Model 2 / 13



Statistical perspective

We aim to understand the behavior of this interacting particle systems

where N ∫ 1. For example, when modeling particles in gas, we have

N ¥ 10
23

(Avogadro’s number). Due to the large system size N, its

nonlinearity, and the coupling between particles, tracking all individual

trajectories become computationally infeasible.

Key idea
Analyze the approximate dynamics of a single particle from a statistical

point of view.

We study the limiting behavior of the empirical measure

d‹N,t =
1

N
Nÿ

i=1
d”◊i (t),

as N æ Œ.
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Mean-field equation

For a smooth interaction W œ CŒ
(T), we obtain the mean-field limit

‹N,t æ ‹t , weakly as N æ Œ,

where ‹t is absolutely continuous with a smooth density qt(◊), which

solves the McKean-Vlasov equation (mean-field equation)

ˆtqt =
1

2
�qt ≠ K Ò

1
qt Ò(W ú qt)

2
.
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Linearized McKean-Vlasov equation

Suppose q œ C2
(T) is a stationary solution of the McKean-Vlasov

equation, i .e.

0 =
1

2
qÕÕ ≠ K

1
q(W Õ ú q)

2Õ
.

Goal
Understand in which situation a solution converges to a stationary state q.

The first step is to study dynamics when the initial condition is a

perturbation of q. Consider the evolution of the perturbation

ut(◊) = qt(◊) ≠ q(◊). Then it follows

ˆtut(◊) = Lqut(◊) ≠ K
1
ut(W Õ ú ut)

2Õ
.
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Here, Lq is the linear operator defined by

Lqu =
1

2
uÕÕ ≠ K

1
q(W Õ ú u) + u(W Õ ú q)

2Õ
.

When the initial perturbation u0 is su�ciently small, then we may only

consider the linear term in the equation as,

ˆtut(◊) = Lqut(◊).

This is the linearized McKean-Vlasov equation at the stationary

solution q, which is the primary object in this talk.
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Free energy

The McKean-Vlasov equation can be understood as a gradient flow for the

free energy functional F with respect to the Wasserstein-2 distance on the

space of probability measures with finite second moments as,

ˆtqt = Ò
5
qt Ò

1”F(qt)
”qt

26
,

where ”F/”q is L2
Fréchet derivative of the functional F . The free energy

F is defined by

F(q) =
1

2

⁄
q log q d◊ ≠ K

2

⁄
q(W ú q) d◊.

Therefore, a critical point of F is equivalent to a stationary solution of the

McKean-Vlasov equation.
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Phase transition

For smooth attractive interaction W , a phase transition occurs, i .e. there

exists a critical interaction strength Kc > 0 such that

1 For K < Kc , the uniform distribution qunif = (2fi)
≠1

is the unique

minimizer of the free energy F .

2 For K > Kc , there exists a non-uniform minimizer q ”= qunif of F .

Remark. By the continuity of F , the uniform distribution qunif remains a

minimizer when K = Kc .
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Kuramoto model
The Kuramoto model corresponds to the the interaction potential

W (◊) = cos ◊.

Let q(◊) be a stationary solution of the McKean-Vlasov equation. Defining

its first Fourier coe�cient as r =
s q(Ï) cos Ï dÏ, the stationary solution

takes the form

q(◊) =
exp(2Kr cos ◊)s

exp(2Kr cos ◊) d◊
,

where r = r(K ) solves the self-consistency equation

r =

s
cos ◊ exp(2Kr cos ◊) d◊s

exp(2Kr cos ◊) d◊
.

Equivalently, r is a critical point of (parameterized) free energy functional

FK (r) = Kr2 ≠ log

1
1

2fi

⁄
exp(2Kr cos ◊) d◊

2
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Figure: Parameterized free energy FK (r) for di�erent K œ {0.8, 1, 1.2}.
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Kuramoto-Daido model

Kuramoto-Daido model was introduced by Daido (1995); Daido (1996),

with the interaction potential

W (◊) = cos ◊ + m cos 2◊, m > 0.

Daido proposed the model to study multibranch synchronization

phenomena, which involve interactions through multiple Fourier modes.

Through numerical simulations and heuristic arguments, he demonstrated

the occurrence of phase transitions. Since then, the Kuramoto-Daido

model has been studied in physics literature Hansel-Mato-Meunier (1993);

Komarov-Pikovsky (2014); Cobero-Politi-Rosenblum (2016).

Remark. For m < 0, this model has Kc = 1, as in the Kuramoto model,

analyzed by Vukadinovic (2023).
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Phase Transition in the uniqueness of the stationary solution
There exists a uniform constant mú œ (1, 2) such that

1 For m œ [0, 1/2], Kc = 1 and the transition is continuous.

2 For m œ (1/2, 1], Kc < 1 and the transition is discontinuous.

3 For m œ (1, mú), Kc < m≠1
and the transition is discontinuous.

4 For m = mú, Kc = m≠1
and the transition is discontinuous.

5 For m œ (mú, Œ), Kc = m≠1
and the transition is continuous.

Linear stability at the non-uniform stationary solution q
Assume K > 1 and m œ (0, 8.568 ◊ 10

≠4
]. Then the spectrum of linearized

McKean-Vlasov operator Lq consists solely of pure points lying in (≠Œ, 0],
and it includes the eigenvalue 0 whose one-dimensional eigenspace is

spanned by qÕ
. Moreover, the spectral gap is bounded below by

gap(Lq) Ø C ,

where the positive constant C is a function of K , m.
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Thank you for your attention.
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