
Undergraduate Math Research

Info Session

Monday, January 26th, 2026
University of California, Santa Barbara

Do you like pizza and/or math?

Scan this QR code to receive a copy of these slides
and support future events like this!

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

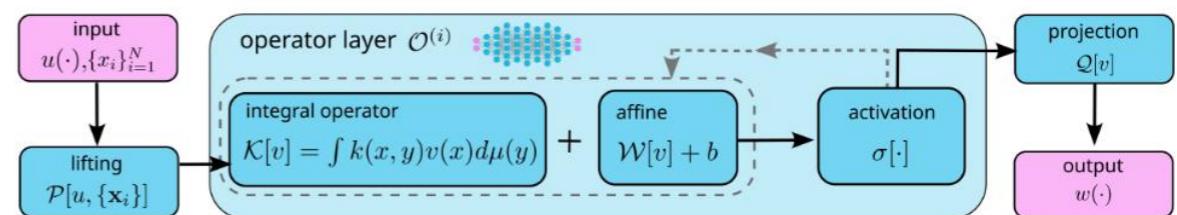
Atzberger Group

Applied Analysis:

- Differential Geometry
- Stochastic Analysis
- Numerical Methods

Machine Learning / AI:

- Geometric Deep Learning
- Adversarial Learning
- Scientific ML & Applications


Computational Mathematics

- Fluctuating Hydrodynamics (SPDEs)
- Statistical Mechanics of Soft Materials
- Biophysics Applications

[sign-up here](#)

Geometric Neural Operators (GNPs)

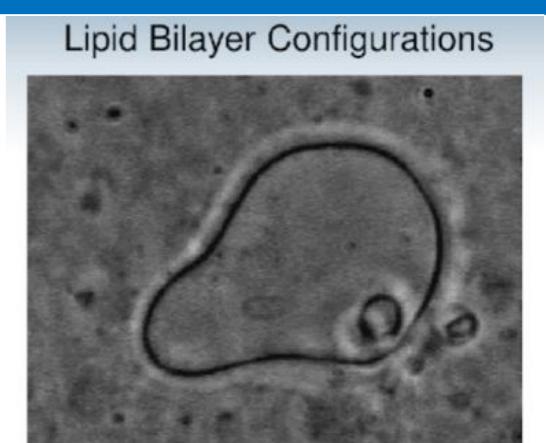
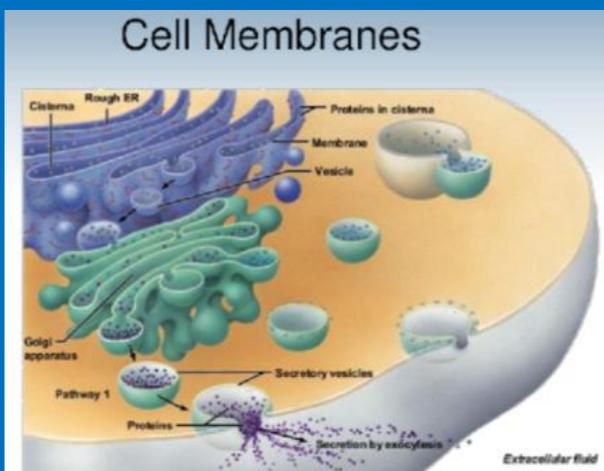
Mean-Curvature Flow

Atzberger Group

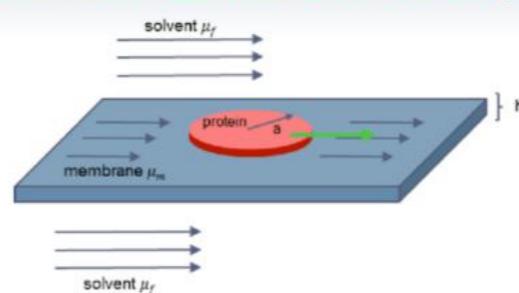
Applied Analysis:

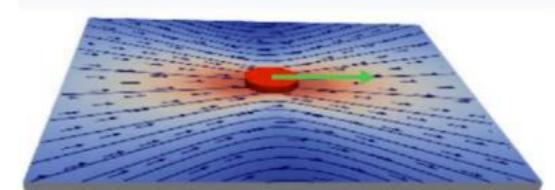
- Differential Geometry
- Stochastic Analysis
- Numerical Methods

Machine Learning / AI:



- Geometric Deep Learning
- Adversarial Learning
- Scientific ML & Applications

Computational Mathematics


- Fluctuating Hydrodynamics (SPDEs)
- Statistical Mechanics of Soft Materials
- Biophysics Applications


[sign-up here](#)

Saffman-Delbrück Theory

Immersed Boundary SD

(Atzberger & Sigurdsson, Soft Matter, 2016)

Atzberger Group

Applied Analysis:

- Differential Geometry
- Stochastic Analysis
- Numerical Methods

Machine Learning / AI:

- Geometric Deep Learning
- Adversarial Learning
- Scientific ML & Applications

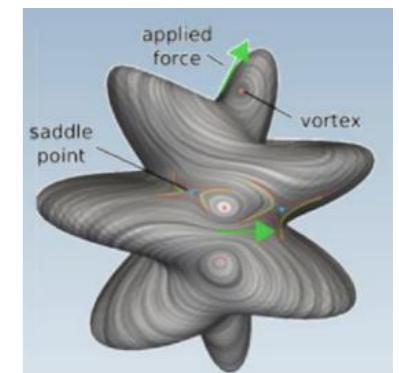
Computational Mathematics

- Fluctuating Hydrodynamics (SPDEs)
- Statistical Mechanics of Soft Materials
- Biophysics Applications

[sign-up here](#)

Surface Fluctuating Hydrodynamics (Inertial Regime)

Fluid


$$\begin{aligned}\rho \frac{d\mathbf{v}^b}{dt} &= \mu_m \left(-\delta \mathbf{d} \mathbf{v}^b + 2K \mathbf{v}^b \right) - \mathbf{d} p + \mathbf{t}^b + \Lambda \left[\gamma \left(\mathbf{V} - \Gamma \mathbf{v}^b \right) \right] + \mathbf{f}_{thm}^b \\ -\delta \mathbf{v}^b &= 0.\end{aligned}$$

Microstructures

$$\begin{aligned}m \frac{d\mathbf{V}}{dt} &= -\gamma \left(\mathbf{V} - \Gamma \mathbf{v}^b \right) - \nabla \phi + \mathbf{F}_{thm} \\ \frac{d\mathbf{X}}{dt} &= \mathbf{V}.\end{aligned}$$

Thermal Fluctuations

$$\begin{aligned}\langle \mathbf{f}_{thm}(t) \mathbf{f}_{thm}(s)^T \rangle &= -2k_B T \mathcal{L}_{ff} \delta(t-s) \\ \langle \mathbf{F}_{thm}(t) \mathbf{F}_{thm}(s)^T \rangle &= 2k_B T \gamma \mathcal{I} \delta(t-s) \quad \mathcal{L}_{ff} = \mathcal{L}_f - \gamma \Lambda \Gamma \\ \langle \mathbf{F}_{thm}(t) \mathbf{f}_{thm}(s)^T \rangle &= -2k_B T \gamma \Gamma \delta(t-s). \quad \mathcal{L}_f = \mu_m (-\delta \mathbf{d} + 2K) + \mathcal{T}_f\end{aligned}$$

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Introduction to Algebraic Geometry

Shapes, Equations, and Applications

Xiaolei Zhao

January 26, 2026

The Bridge Between Shape and Equation

What is Algebraic Geometry?

It is the study of geometric shapes defined by sets of algebraic equations.
It acts as a translation dictionary between:

Geometry (Visual)

- Curves, surfaces, and higher dimensions.
- Intuitive properties (holes, intersections).

Algebra (Formal)

- Polynomials and Rings.
- Calculation and formal manipulation.

The Central Idea: Zeros of Polynomials

- $y - x^2 = 0 \rightarrow \text{Parabola}$
- $x^2 + y^2 - 1 = 0 \rightarrow \text{Circle}$

The Toolkit and Vocabulary

- **1. Affine & Projective Varieties**
 - The fundamental shapes are called *Varieties*.
 - We often work in **Projective Space** (adding points at infinity) so that parallel lines meet, making the math more symmetric.
- **2. The Algebra-Geometry Duality**
 - **Ideals:** A collection of polynomials corresponds to a shape.
 - **Coordinate Rings:** We study functions on the shape to understand the shape itself.
- **3. The Modern Revolution (Schemes)**
 - Pioneered by Alexander Grothendieck.
 - Allows us to do geometry over integers, bridging the gap to **Number Theory**.

Why It Matters (Real-World Applications)

- **Cryptography (Digital Security)**
 - **Elliptic Curve Cryptography (ECC):** Modern encryption relies on the algebraic structure of curves defined by:
$$y^2 = x^3 + ax + b$$
 - Hard to reverse without a key, keeping data secure.
- **Theoretical Physics**
 - **String Theory:** Uses Calabi-Yau manifolds to model the hidden extra dimensions of the universe.
- **Robotics & Coding**
 - **Kinematics:** Robot movement ranges are calculated using algebraic varieties.
 - **Error Correction:** Used in satellite data transmission.

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

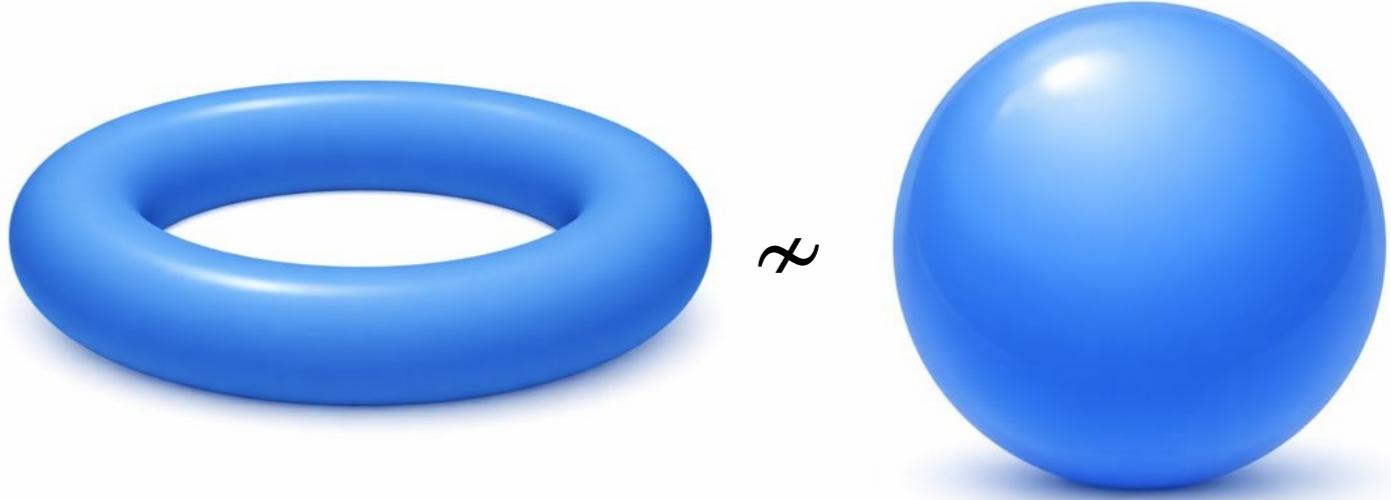
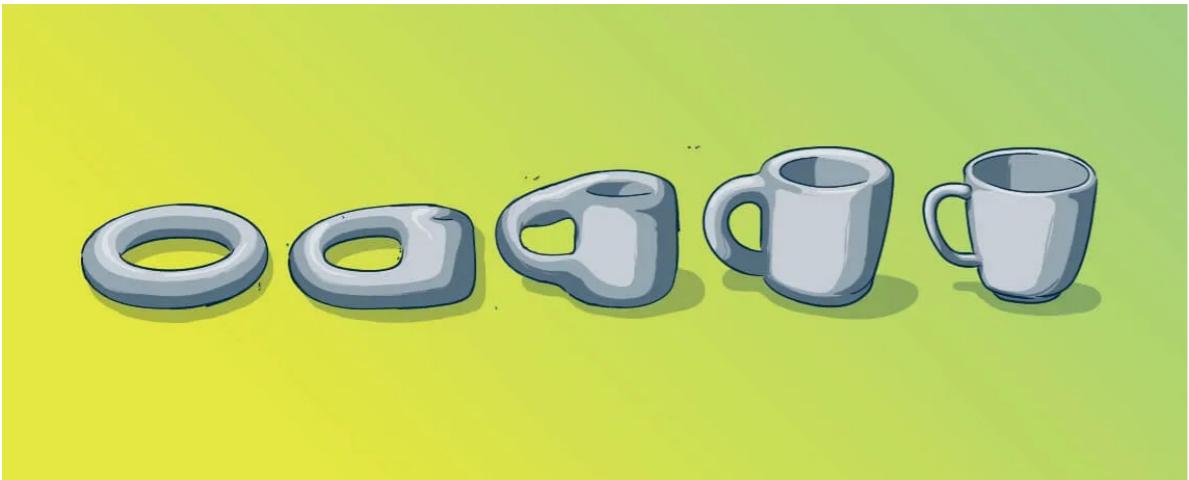
Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

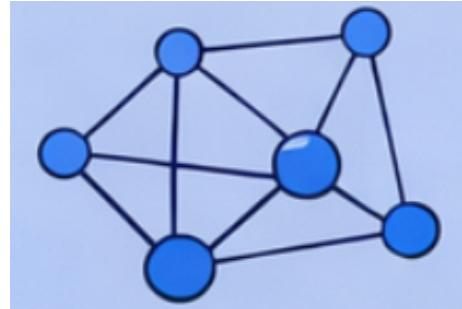
Quinn Kolt (math)



Prof. Katy Craig (math)

Directed Reading Program

Research in Topology

Rhea Palak Bakshi
University of California, Santa Barbara


Information Session for Undergraduate Research
January 26, 2026

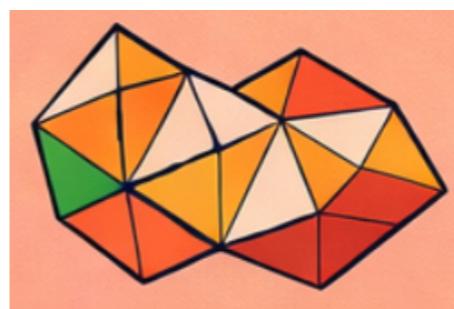
Topology


- Mathematical study of objects that are highly mouldable
- Branch of abstract math - exploration of properties of 'geometric' objects
- Think of it as geometry but no concept of distance
- Tells apart objects based on the number and kinds of holes in them

Point-Set Topology

Topological Spaces
Continuous Maps
Connected and Compact

Algebraic Topology


Homotopy Groups
Homology Groups
Covering Spaces

Differential Topology

Smooth Manifolds
Intersection Theory
Morse Theory

Piecewise-Linear Topology

PL Structures
Simplicial Complexes
Triangulations

Geometric Topology

Knot Theory
Low-Dimensional Topology
Mapping Class Groups

Quantum Topology

Skein Modules
TQFTs and Anyons
Hyperbolic Geometry

Algebraic Geometry

Mirror Symmetry

Hyperbolic Geometry

Quantum Cluster algebras

Temperley - Lieb algebras

Topological Quantum Field Theories

Skein Modules

Hecke algebras

Hopf algebras

Witten - Reshetikhin - Turaev Invariants

Representation Theory

Homological invariants

AJ Conjecture

Volume Conjecture

Research Opportunities With Me

Directed Reading Program

2025 3-Manifold Topology

Introduction to Knot Theory

Khovanov Homology

Skein Modules and Algebras

2026 Gram Determinants

Research Projects

2025 - 2026

Medial Quandles and Causality Detection

Summer Research (future)

2026

Problems in Combinatorial Knot Theory

Stephen Bigelow

Quantum Algebra and Braid Groups

Rhea Palak Bakshi

John McCammond

Geometric Group Theory and Combinatorics

Quantum Topology and Knot Theory

Quinn Kolt

Category Theory and Quantum Algebra

Tonie Scroggin

Braid Varieties and Cluster Algebras

Alfredo Ramirez

Low-Dimensional Topology

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

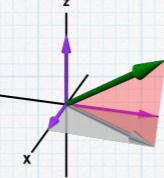
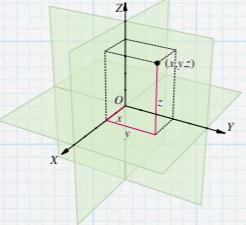
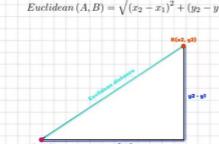
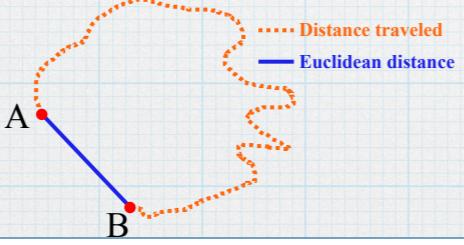
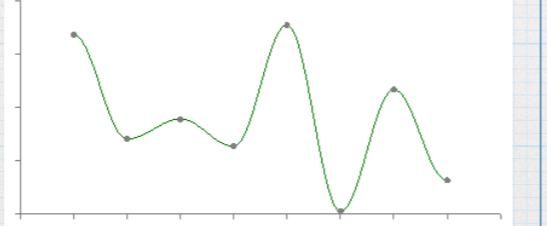
Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

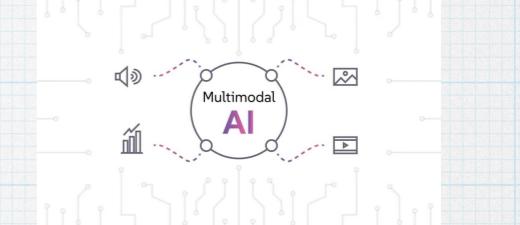
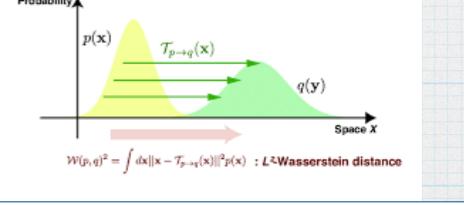
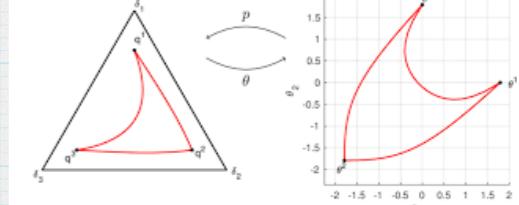
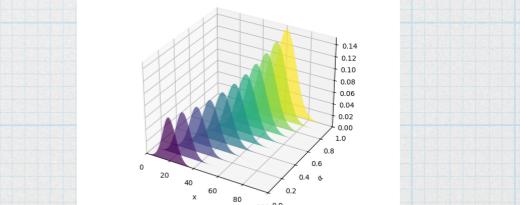
Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)






Max Emerick (mechanical engineering)

Quinn Kolt (math)





Prof. Katy Craig (math)

Directed Reading Program

from Euclidean

Points, Vectors	
$x = (x_1, x_1, \dots, x_m)$	
Distances	<p>Euclidean Distance</p> $\text{Euclidean}(A, B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Path	
Interpolation	

to Non-Euclidean

Datasets, Texts, Musics...									
	$P(a \leq X \leq b) = \int_a^b f(x)dx$								
(Wasserstein) distances/ divergence	<p>Probability Distribution</p> <table border="1"> <tr> <td>Continuous</td> <td>Uniform</td> <td>Exponential</td> <td>Normal</td> </tr> <tr> <td>Discrete</td> <td>Binomial</td> <td>Geometric</td> <td>Hypergeometric</td> </tr> </table>	Continuous	Uniform	Exponential	Normal	Discrete	Binomial	Geometric	Hypergeometric
Continuous	Uniform	Exponential	Normal						
Discrete	Binomial	Geometric	Hypergeometric						
Geodesics									
Interpolation									

from Euclidean

to Non-Euclidean

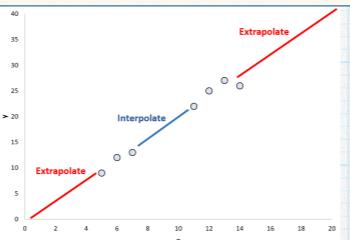
Mean

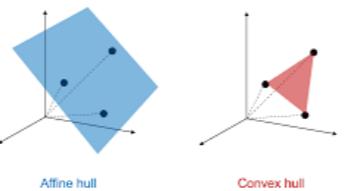
Sample Mean vs. Population Mean

Sample Mean

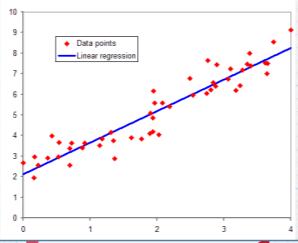
$$\bar{x} = \frac{\sum x_i}{n}$$

Average of a subset of values from a population


Population Mean


$$\mu = \frac{\sum X_i}{N}$$

Average of all values in a population


Extrapolation

Affine hull

Regression

Linear independence, dimensions

Linear independence of vectors

A set of vectors v_1, v_2, \dots, v_n is linearly independent if the equation

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$$

is only satisfied by $a_1 = a_2 = \dots = a_n = 0$.

Barycenter

Extrapolation

knew so little

Signed Barycenter

See our work

Regression

Knew so little

Linear independence, dimensions

Completely new, and so much going-on!!!

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

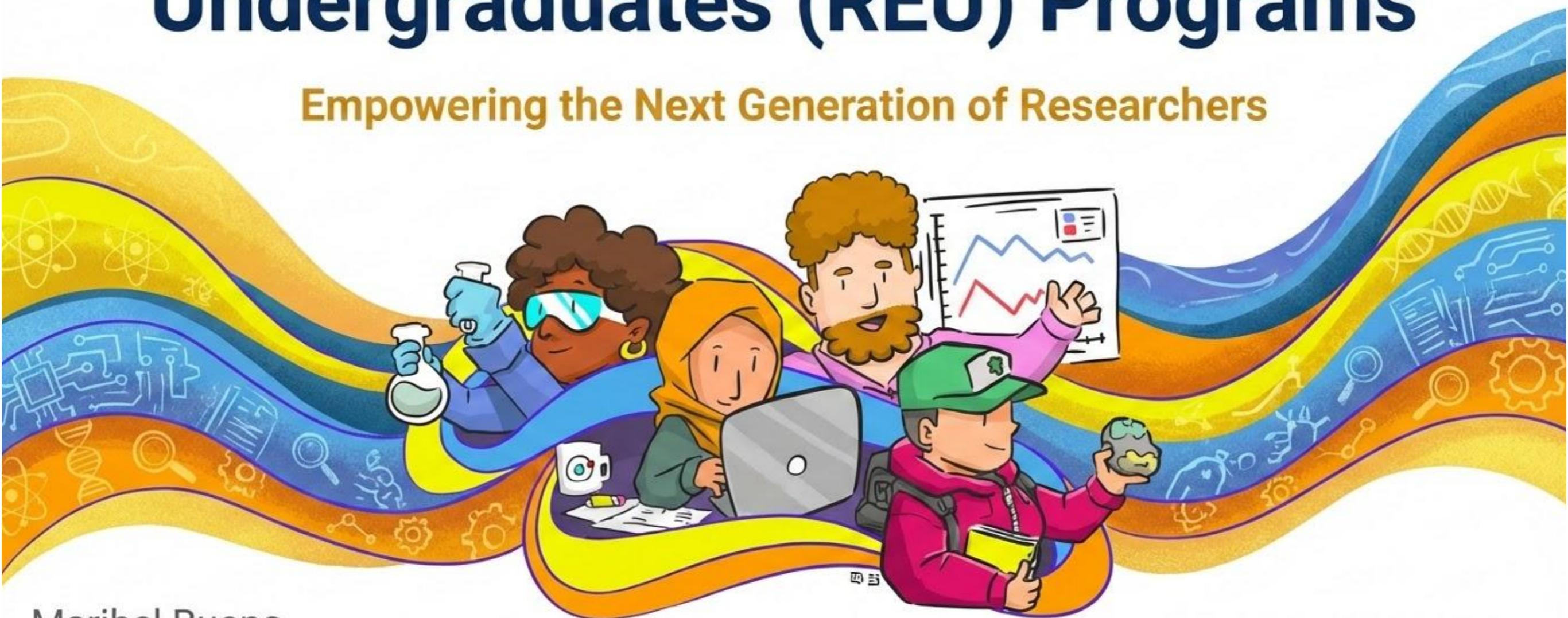
Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)


Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Exploring Research Experience for Undergraduates (REU) Programs


Empowering the Next Generation of Researchers

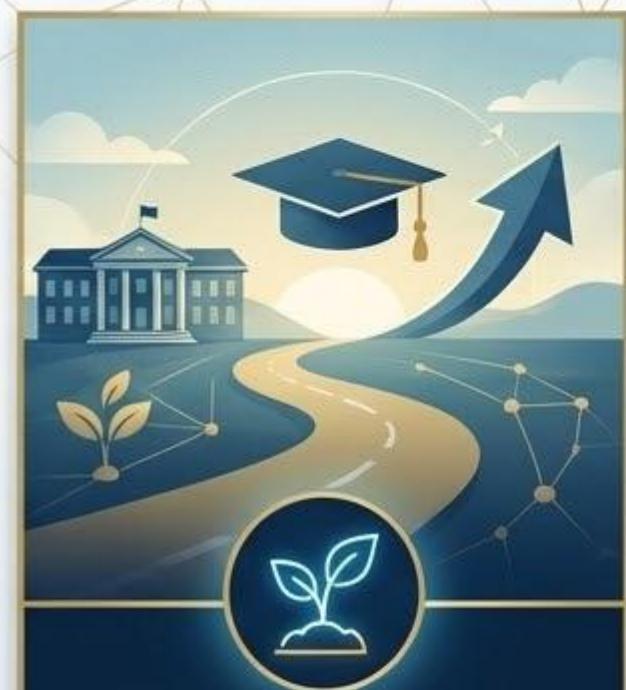
Maribel Bueno

Illustration by COLDEX REU student Kyle Suen

WHAT IS AN REU?

1. Competitive, Immersive Opportunities

Competitive, immersive research opportunities for undergraduates.


2. Hands-on Experience & Mentorship

Aimed to provide students with **hands-on research experience**, exposure to cutting-edge topics, and **mentorship** by faculty members.

3. Engage, Workshop, Present

Participants engage in research projects, attend workshops, and often present their findings.

4. Future Researcher Development

Play a crucial role in fostering the **development of future researchers** by offering valuable experiences **beyond traditional classroom settings**.

BENEFITS OF REU PROGRAMS

Hands-on research experience

Exposure to advanced topics

Professional development

Networking opportunities

Publication and presentation opportunities

Enhanced academic and career opportunities

Financial support

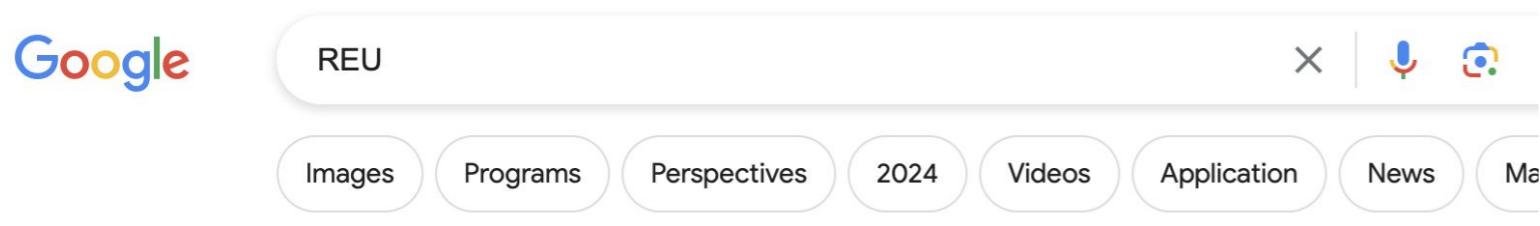
Diversity and inclusion

Personal and academic growth

Bridge to graduate studies

ELIGIBILITY AND APPLICATION PROCESS

ELIGIBILITY:


- Must be a US citizen or permanent resident. Some accept international students.
- Undergraduates not graduating seniors.
- Cannot work during the duration of the program.
- May be able to take 1 class concurrently.
- GPA requirement.

APPLICATION PROCESS

1. Search for programs.
2. Application materials: Send CV, 2 letters of recommendation, copy of transcripts, letter of intent, application form.
3. Sometimes interviews.
4. Deadlines in February-March.
5. Notification of acceptance.
6. Acceptance and commitment.

HOW TO FIND REU PROGRAMS

Google search results for "REU". The search bar shows "REU". Below the bar are filters: Images, Programs, Perspectives, 2024, Videos, Application, News, and More. The text "About 66,300,000 results (0.34 seconds)" is displayed. The first result is a link to the National Science Foundation website.

About 66,300,000 results (0.34 seconds)

 National Science Foundation (.gov)
<https://www.nsf.gov/crssprgm/reu> ::

REU - For Students | NSF - National Science Foundation

For Students. NSF funds a large number of research opportunities for undergraduate students through its REU Sites program. An REU Site consists of a group of ...

Search for an REU Site

Biological Sciences - Engineering - Chemistry - Physics - ...

List of REU sites

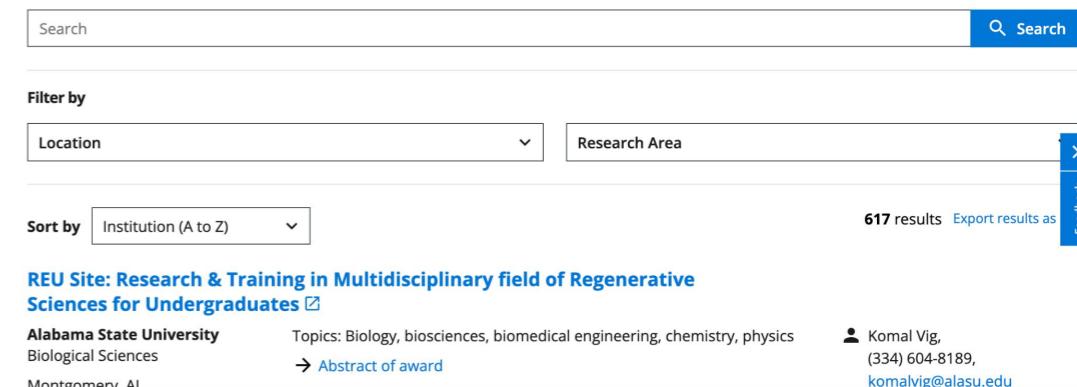
REU Sites: Biological Sciences · Alabama State University ...

REU Sites: Chemistry

REU Sites: Chemistry. This is a list of the active chemistry division ...

REU Sites: Engineering

NSF's mission is to advance the progress of science, a mission ...


[More results from nsf.gov »](#)

Search REU Sites

Use this page to explore existing U.S. National Science Foundation Research Experiences for Undergraduates (NSF REU) Sites. You can search by research area, location and keyword.

The directory provides the website and contact information for each REU Site. Once you have found an REU Site that interests you, you must consult each REU Site directly for information and application instructions.

If you are the director of an REU Site and your Site's entry in this directory needs to be updated, please contact the NSF program officer who oversees your REU Site award or the [REU Site program contact](#) for the NSF unit that manages your award.

Search REU Sites interface. It includes a search bar, filter options for Location and Research Area, and a sorting dropdown. The results list shows one entry for Alabama State University.

Search REU Sites

Search

Filter by

Location Research Area

Sort by Institution (A to Z)

617 results Export results as Feedback

REU Site: Research & Training in Multidisciplinary field of Regenerative Sciences for Undergraduates

 Komal Vig, (334) 604-8189, komalvig@alasu.edu

Alabama State University Topics: Biology, biosciences, biomedical engineering, chemistry, physics
Biological Sciences → [Abstract of award](#)
Montgomery, AL

Site Information**Site Location****Contact Information****Additional Information****Arizona State University**

REU Site: Quantitative Research for the Life and Social Sciences (QRLSS)

Tempe, Arizona

Primary: Sherry Woodley

sherry.woodley@asu.edu

Research Topics/Keywords: Main Field: Mathematical Sciences Sub-Fields: Biological and Social Sciences

[Abstract of Award](#)

California State University, Chico

REU Site: Research Experience in Mathematics for Undergraduates and Teachers

Chico, California

Primary: Kevin McGown

(530) 898-4083

kmcgown@csuchico.edu

Research Topics/Keywords: Main field and sub-fields of the research: Mathematics: Statistics, Number Theory, Aperiodic order, Topology, Commutative algebra, Graph theory

Comments: Renewal of previously funded REU Site (NSF award number 1559788)

[Abstract of Award](#)

California State University, San**Bernardino**

REU Site: Investigations in Geometry and Knot Theory

San Bernardino,

California

Primary: Corey Dunn

(909) 537-5368

cmdunn@csusb.edu

Secondary: Rolland Trapp

Research Topics/Keywords: Differential geometry, knot theory

Comments: Renewal for 1758020

[Abstract of Award](#)

Clarkson University

REU Site: Mathematical Biology Team Science (MBioTS) Research for Undergraduates (REU) Program at Clarkson University

Potsdam, New

York

Primary: James Greene

(315) 268-4074

jgreene@clarkson.edu

Secondary: Susan Bailey

Research Topics/Keywords: Mathematical Biology, Dynamical Systems, Applied Topology, Control Theory, Uncertainty Quantification, Machine Learning, Cell Biology, Evolution, Toxicology

[Abstract of Award](#)

Cornell University

RTG: Dynamics, Probability, and Partial Differential Equations in Pure and Applied Mathematics
Mathematics

Ithaca, New York

Primary: Alex Vladimirsky

(607) 255-9871

vladimirsky@cornell.edu

Research Topics/Keywords: Optimality & uncertainty in control problems and games; periodic non-intersecting random walks and random matrices; nonintegrable constraints in mechanics

[Abstract of Award](#)

INDIANA REU PROGRAM - EXAMPLE

Each participant will receive a **\$5,000 research stipend**.

The 2026 REU program will be held virtually from June 8 – July 31, 2026. All meetings and interactions will be held on Zoom, but students will have the opportunity to travel to Indianapolis for an in-person conference in late July.

Complete applications are due February 13, 2026. Please see project descriptions and the application below.

For additional information about the 2026 REU program, please contact Dr. Julia Arciero at jarciero@iu.edu.

Projects for the 2026 REU Program

1. Mathematical modeling of heart transplantation (Advisor: [Dr. Julia Arciero](#))
2. Modeling forces in cell migration (Advisor: [Dr. Jared Barber](#))
3. Modeling cellular and membrane dynamics (Advisor: [Dr. Horia Petrache](#))
4. Modeling survival thresholds in biological populations
(Advisor: [Dr. Sebastian Sensale](#))

Additional project details

Project 1: Mathematical modeling of heart transplantation +

Project 2: Modeling forces in cell migration +

Project 3: Modeling cellular and membrane dynamics +

Project 4: Modeling survival thresholds in biological populations +

PROGRAM COMPONENTS

CORE RESEARCH & MENTORSHIP

- Research projects.
- Mentorship.
- Evaluation and feedback.

COMMUNITY & NETWORKING

- Peer interactions.
- Networking opportunities.
- Field trips (optional).

SKILL & KNOWLEDGE BUILDING

- Workshops and seminars.
- Professional development.
- Graduate school information.

DISSEMINATION & OUTPUT

- Presentations.
- Research symposium/conference.
- Publication opportunities.

APPLICATION TIPS

PREPARATION & RESEARCH

- Start early.
- Explore various REU programs.
- Check for eligibility.

TAILORING & SUBMISSION

- Customize your application.
- Express enthusiasm.
- Follow instructions precisely.
- Edit and proofread carefully.
- Submit early.

APPLICATION MATERIALS

- Prepare a strong resume.
- Craft a compelling personal statement.
- Secure strong letters of recommendation (give recommenders ample time).
- Highlight previous research experience or related skills.

FOLLOW-UP & INTERVIEWS

- Highlight skills and relevant coursework.
- Prepare for interviews (if applicable).

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

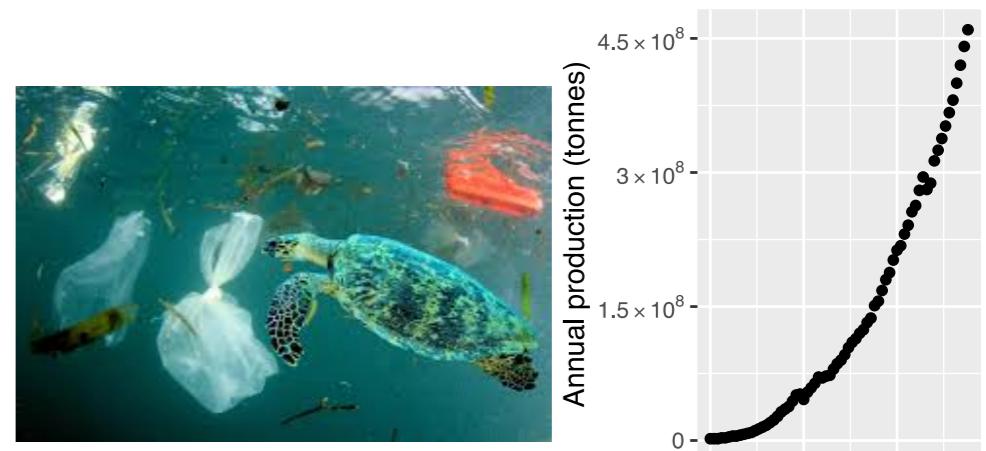
Prof. Katy Craig (math)

Directed Reading Program

Fast Phase Prediction of Charged Polymer Blends by White-Box Machine Learning Surrogates

Clayton Ellis
PhD student Department of Statistics and Applied Probability

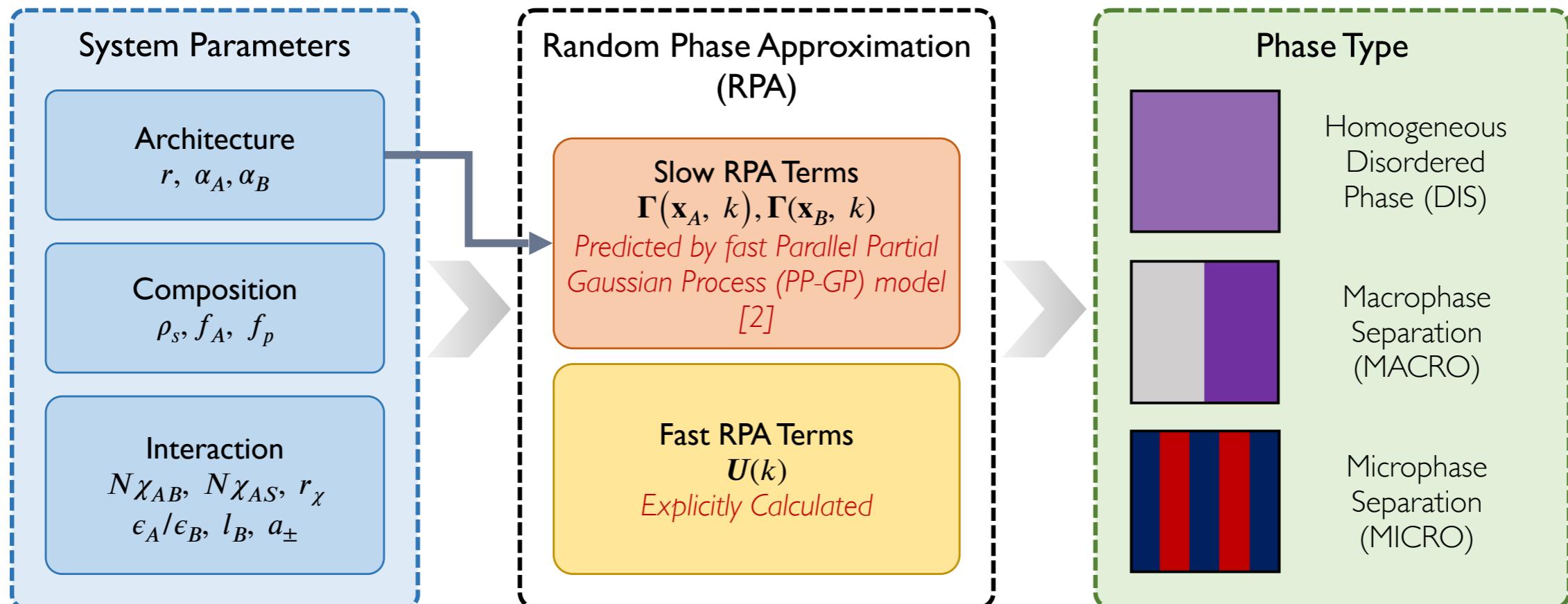
in collaboration with
Xinyi Fang, Chris Balzer, Timothy Quah, Scott Shell,
Glenn Fredrickson and Mengyang Gu



Saving the World with Recycling

- The amount of plastic waste is increasing and we need better ways to recycle it
- Using electric charge, we can mix polymers that normally don't mix but make up a lot of waste
- Simulation methods, such as Self-consistent field theory (SCFT) and random phase approximation (RPA) are **fast compared to experiments**, but they can still be **slow as input design is large**.

Summary of our results:


- We develop a predictive model to emulate RPA which achieve **>99% accuracy** with only around **20 training samples**, while other predictive model needs 10^2 - 10^3 samples to be 80% accurate
- We achieve this by focusing on emulating the part of the RPA dependent only on the polymer architectures; once this is emulated, the computation is around **100x times faster**

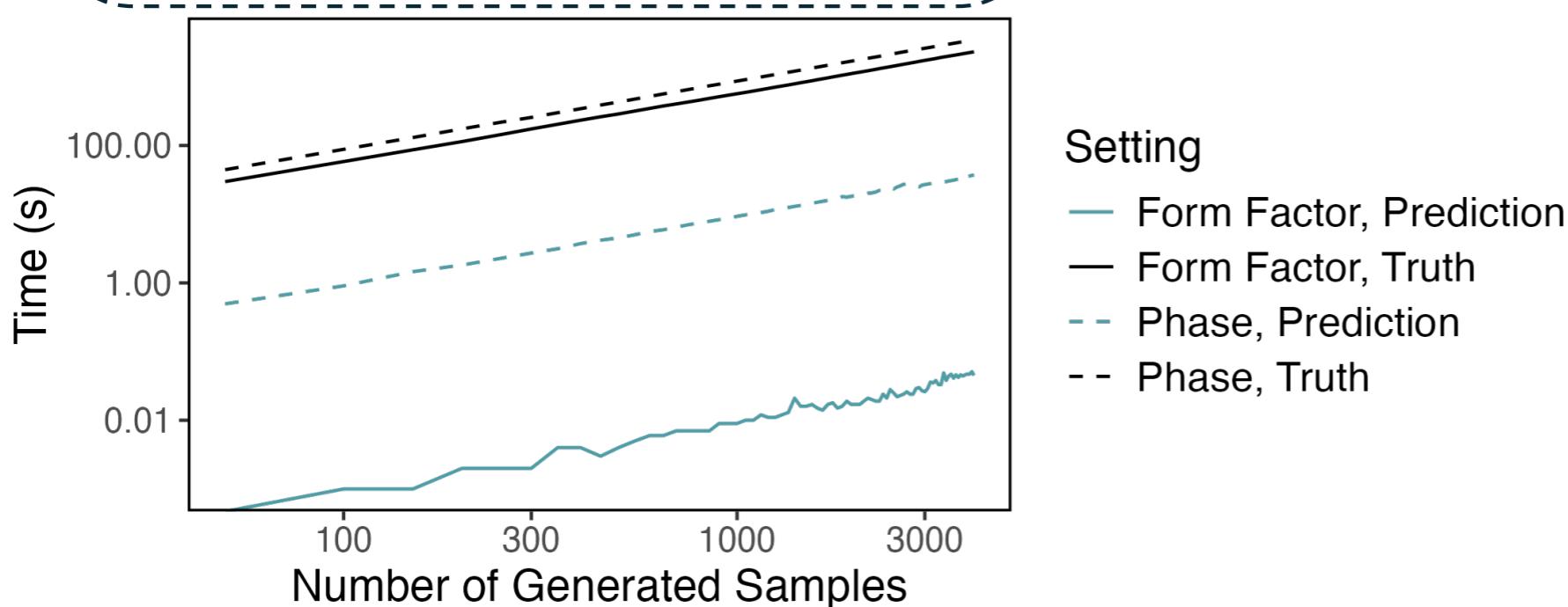
“Hey ChatGPT, generate an image to save the world of plastic by recycling”

[1] Ellis, C., Fang, X., Balzer, C., Quah, T., Shell, M. S., Fredrickson, G. H., & Gu, M. (2025). Fast phase prediction of charged polymer blends by white-box machine learning surrogates. *Macromolecules*.

Workflow for Phase Generation

High-dimensional parameter space describes broad class of charged copolymer blends

Ascertaining phase behavior requires numerical evaluations of both easy and difficult to compute quantities


The RPA simulation allows for the classification of phase behavior as a disordered, microphase or macrophase separated state

[2] Gu, M., & Berger, James O (2016). Parallel Partial Gaussian Process Emulation for Computer Models with Massive Output. *Annals of Applied Statistics*. 10(3) 1317-1347

Comparison with Direct Simulation and Alternative Methods

Time ↓:

- For computation of form factor entries: **50,000-70,000 times faster**
- For phase determination: **~100 times faster**
- For computational complexity: **Linear in observations/grids** rather than **quadratic in bead counts**

Accuracy ↑:

- **Over 99% prediction accuracy with only 50 training points**
- **25-30% better** than classical models with **500 training points**

Thank You!

Xinyi Fang

Dr. Chris Balzer

Dr. Timothy Quah

Dr. Scott Shell

Dr. Glenn
Fredrickson

Dr. Mengyang
Gu

<https://sites.google.com/site/michaelmengyanggu/members>

UC Santa Barbara **MRL** Materials Research Laboratory

NSF Materials Research Science and Engineering Center [DMR-2308708]

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

About Me (Max Emerick)

- Originally from Seattle, Washington
- Bachelor's at Cal Poly, Master's at UCSB
- Now in 4th year of PhD
- Studying mechanical engineering
- In my free time, I like to surf, hike, mountain bike, rock climb, etc.

My Research

- Broadly: dynamical systems and control theory
- Study systems modeled by differential equations: $\frac{d}{dt}x(t) = f(x(t), u(t))$
- Try to understand behavior and modify by designing $u(t)$
- Specifically: continuum limits of large-scale systems
 - Robotic swarms, interacting particle systems, large networks, etc.
- Use tools from optimization, differential geometry, and PDEs

Research Process

- Meet every week or two weeks
- Start by talking about interests, find overlaps, share papers
- Select a problem or subproblem
- Work on problem together
- Depending on progress, possibly publish a paper

Get in Touch

- Talk to me after the session
- Email: memerick@ucsb.edu
- Personal Website: <https://maxemerick.github.io/>

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

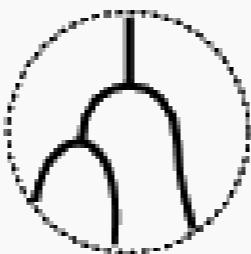
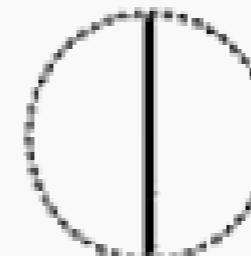
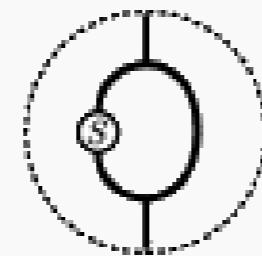
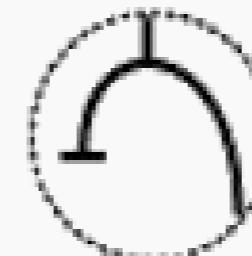
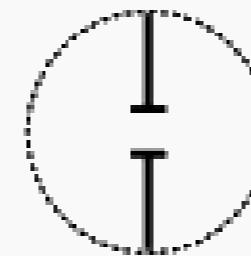
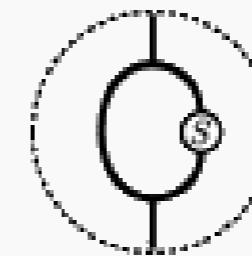
The vibe of quantum algebra

Tensor categories and Hopf algebras

Quinn T. Kolt (she/her)

PhD Candidate

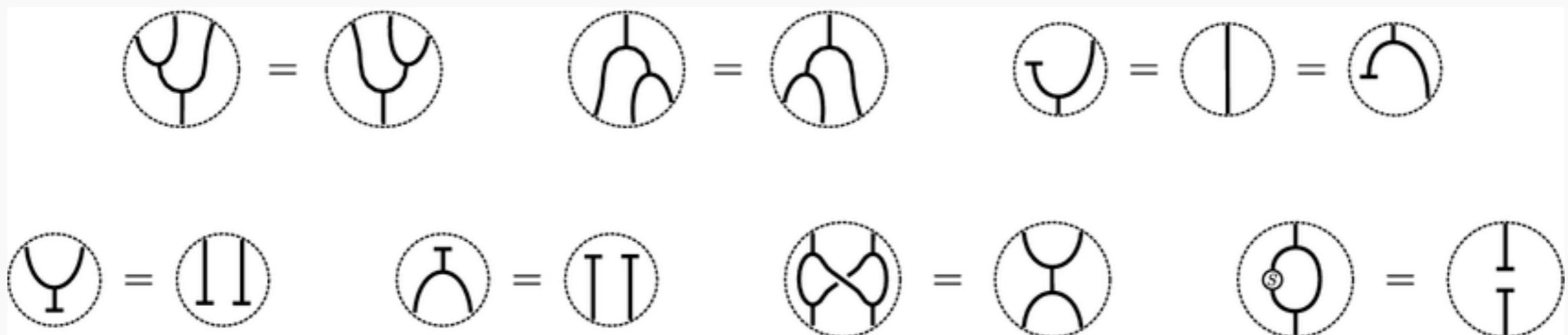
Info Session on Undergraduate Research







January 26, 2026

University of California, Santa Barbara (UCSB)

Department of Mathematics

Group axioms


A *group* is a set G with multiplication $\lambda : G \times G \rightarrow G$, unit $\mathsf{L} : \{*\} \rightarrow G$, and inverse $S : G \rightarrow G$ such that

 $=$ $=$ $=$ $=$ $=$

where $\mathsf{Y} : G \rightarrow G \times G$ is the comultiplication map $g \mapsto (g, g)$ and $\mathsf{T} : G \rightarrow \{*\}$ is the counit map $g \mapsto *$.

Hopf algebra axioms

A *Hopf algebra* is a **vector space** H with **linear** multiplication $\lambda : H \otimes H \rightarrow H$, unit $\mathbb{1} : F \rightarrow H$, comultiplication $\Delta : H \rightarrow H \otimes H$, counit $\epsilon : H \rightarrow F$, and **antipode** $S : H \rightarrow H$ such that

(horizontal reflections not shown)

where $X : H \otimes H \rightarrow H \otimes H$ is the braiding map $h \otimes k \mapsto k \otimes h$.

Note: all of these are satisfied for groups, so groups are Hopf algebras in Set!

How do I learn more?

Books on quantum algebra:

- Kassel-Quantum Groups
- EGNO-Tensor categories (difficult to read but amazing reference)
- <https://people.math.osu.edu/penneys.2/UQSL/UQSL.html>

Who does research in this area?

- Professors in this department:
 - Stephen Bigelow
 - Zhenghan Wang
- I am accepting students (quinn@math.ucsb.edu)!

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

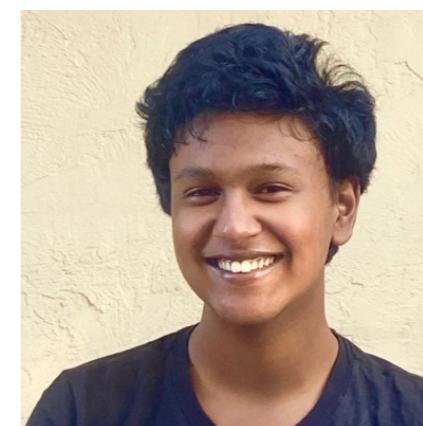
Research - Katy Craig

systems of interacting agents
partial differential equations

optimal transport
optimization

Current/previous undergraduate students:

Emily Lopez
(Minnesota)


Ben Faktor
(UCLA)

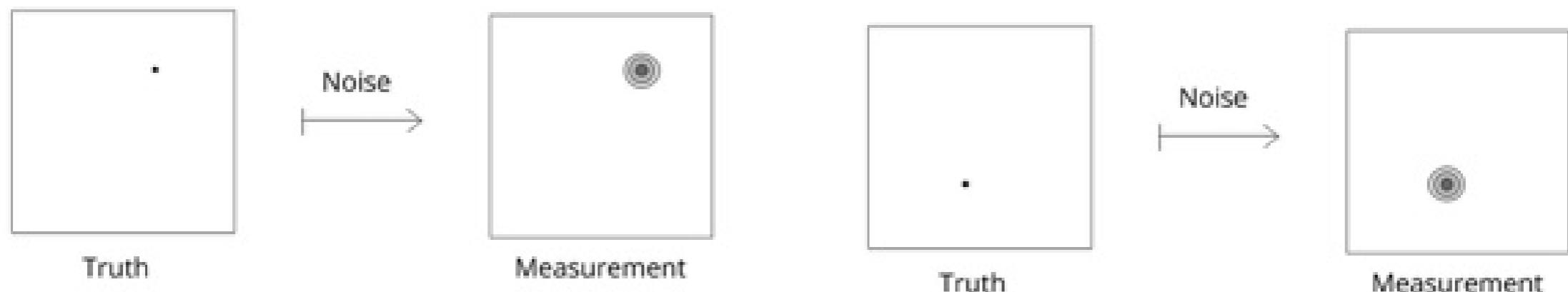
Haoqing Yu
(Cornell)

Vidushi Mittal
(UC Davis)

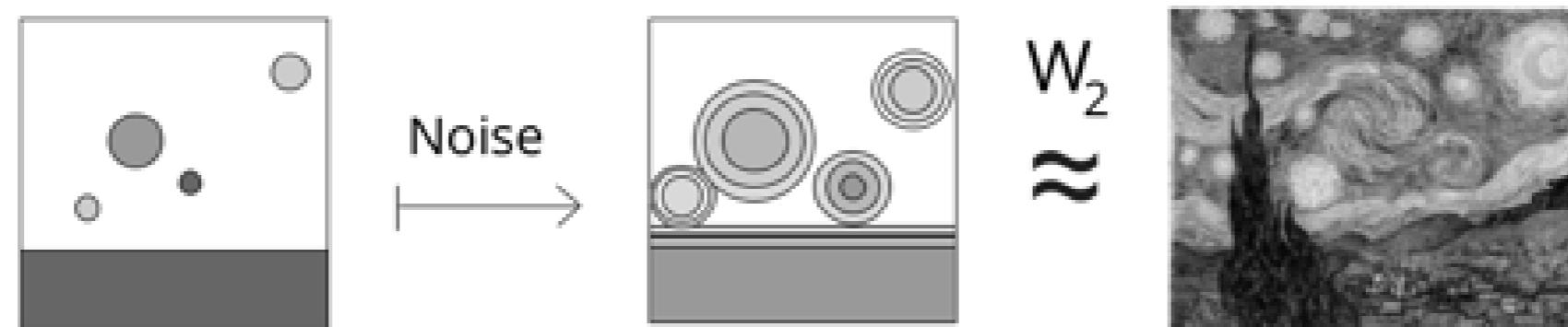
Ashwin Anand
(Current)

My website: <https://web.math.ucsb.edu/~kcraig>

Information for prospective students:


<https://web.math.ucsb.edu/~kcraig/math/ProspectiveStudents.html>

A current project (with Ben Faktor)


Given are a fixed measurement

and a noise model:

Question: Which image's noisification is closest?

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)

Prof. Katy Craig (math)

Directed Reading Program

Plan

Welcome and Introduction - Prof. Katy Craig (math)

Prof. Paul Atzberger (math)

Prof. Xiaolei Zhao (math)

Dr. Rhea Palak Bakshi (math)

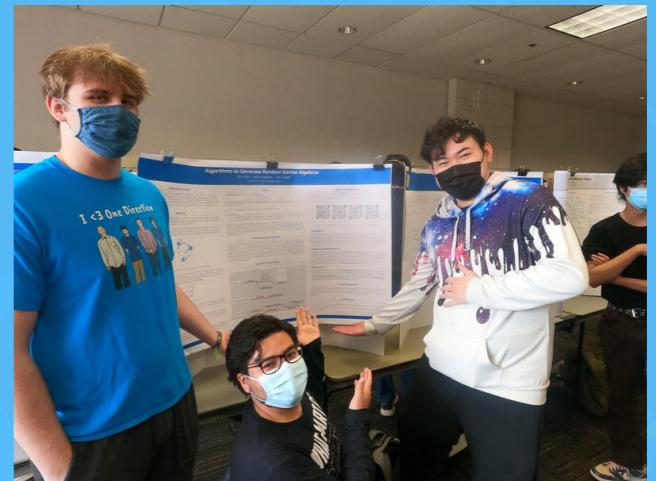
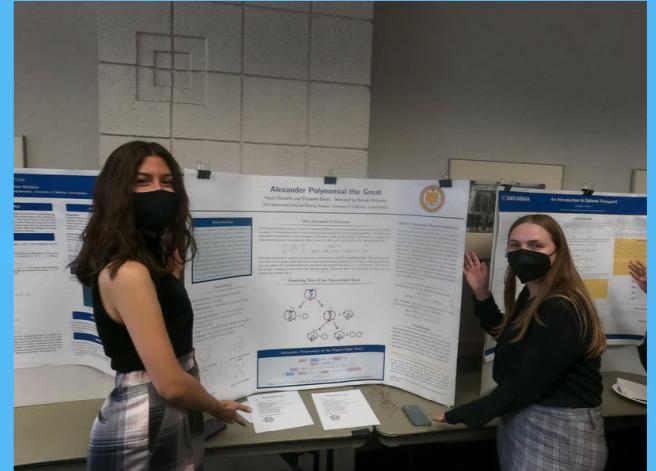
Dr. Bohan Zhou (math)

REU Programs - Prof. Maribel Bueno Cachadina (math)

Clayton Ellis (statistics)

Max Emerick (mechanical engineering)

Quinn Kolt (math)



Prof. Katy Craig (math)

Directed Reading Program

Directed Reading Program

What is the Directed Reading Program?

- One-on-one or small group mentoring
- Work with graduate students and junior faculty
- Join math-related events throughout the year

Directed Reading Program

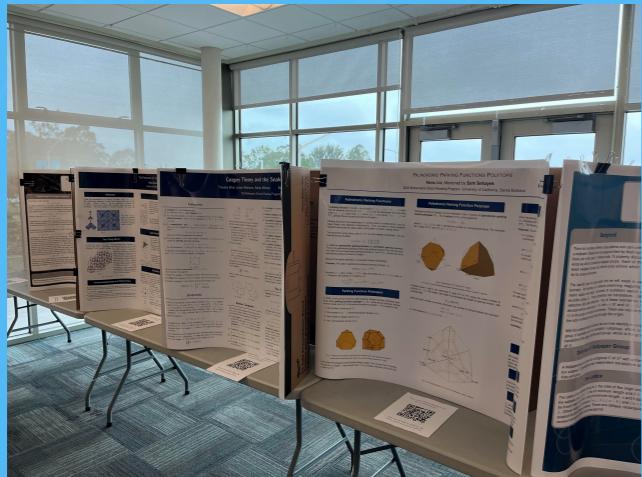
What do I do in the DRP?

- Winter and Spring Quarter: Read interesting math with a mentor!
- Panel discussions:
 - Beyond a Bachelor's, Graduate School Panel
 - Mathematical Career Panel
 - Presenting Mathematics Effectively Workshop
- Universal Cover workshops
- Public poster session on campus!

Directed Reading Program

What are some current projects?

- Fluid dynamics
- Representation theory
- Quantum computing
- Analytic number theory
- Rational homotopy theory
- Cryptography and CS
- Hopf algebras
- Quantum topology
- Geometric group theory
- Computational differential geometry
- Complex geometry
- Elliptic curves
- Mathematical music theory
- Machine learning
- Category theory
- Mathematical physics

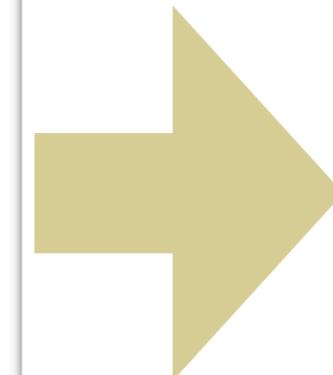

Directed Reading Program

How to Apply

Applications open in early Fall quarter.

Pairings are decided late November.

Check for DRP emails or visit the website!


ucsbdrp.org

Thank you!

Do you like pizza and/or math?

Scan this QR code to receive
a copy of these slides
and support future events like this!

