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Aggregation Equation. dρ
dt +∇ · (vρ) = 0 ρ(0, t) = ρ0(t) ≥ 0

v = −∇K ∗ ρ .

Applied interest:
• K(x) = |x|a/a− |x|b/b, −d < b < a, social aggregation in biology
• K(x) = − log |x|/2π, evolution of vortex densities in superconductors

Kernels with low regularity

Mathematical interest:
• non-local
• blowup
• rich structure of steady states
• gradient flow in the Wasserstein metric: dρ

dt = −∇WE(ρ)

∇WE(ρ) = −∇ ·
(
ρ∇δE

δρ

)
, E(ρ) =

1

2

∫
Rd

∫
Rd

ρ(x)K(x− y)ρ(y)dxdy .
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Particle Approximation and Wasserstein Gradient Flow.
Suppose K is radial, continuously differentiable, and convex and we seek a
weak solution of the form

ρparticle(x, t) =
N∑
j=1

δ(x−Xj(t))mj .

Then the velocity field would be given by

v(x, t) = −
∫

∇K(x− y)ρ(y, t)dy = −
N∑
j=1

∇K(x−Xj(t))mj ,

and ρparticle is a weak solution in case
d

dt
Xi(t) = −

N∑
j=1

∇K(Xi(t)−Xj(t))mj .

−1 0 1

−1

0

1

−∇K(x) =−2x

−1 0 1

−1

0

1

−∇K(x) =− 1
2πx
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FIG. 1. Top: Minimizers of the energy (1) with force law (3).
Diameter d = maxi,j |xi − xj | ranges from 0.3 in top left to 3 in
bottom right. Bottom: time evolution of (4) with values a = 8,
b = 0.67.

stability of “flat” states but rather that of “ring” states in which
particles are concentrated at a particular radius, as seen, for
example, in the lower left corner of Fig. 1. Any potential
that has repulsion dominant in the near field and attraction
dominant in the far field has an exact ring solution whose
radius r0 satisfies

∫ π
2

0
F (2r0 sin θ ) sin θdθ = 0, (5)

where we assume a continuum limit for N is large.
The ring is a special case of an extremum of (1) in which

the particles concentrate on a one dimensional curve. In the
limit N → ∞ such curves satisfy the continuum equation [15]

∂

∂t

(
ρ

∣∣∣∣
∂z

∂α

∣∣∣∣

)
= 0,

∂z

∂t
= K ∗ ρ, (6)

where z (α; t) is a parametrization of the curve,
ρ (α; t) is its particle density, and K ∗ ρ =

∫
F (|z(α) −

z(α′)|) z(α)−z(α′)
|z(α)−z(α′)|ρ(α′,t)dS(α′) with dS denoting the arclength

element. Formula (6) follows from conservation of mass and is
a generalization of the classical Birkhoff-Rott equation for 2D
vortex sheets [16] applied to gradient vector fields rather than
divergence free flow. See Ref. [15] for details. Linear analysis
of the B-R equation describes the classical Kelvin-Helmoltz
instability in fluid dynamics and we use this as an analogy to
our study of equilibrium patterns for the pairwise interaction
energy (1).

Consider the perturbations of the ring of N particles of
the form xk = r0 exp(2π ik/N)[1 + exp(tλ)φk], where φk ≪
1. After some algebra we obtain

λφj = 1
N

∑

k=1..N

k ̸=j

G+

(
π (k − j )

N

)[
φj − φk exp

(
2π i(k − j )

N

)]

+G−

(
π (k − j )

N

)[
φ̄k − φ̄j exp

(
2π i(k − j )

N

)]
,

where j = 1, . . . ,N , G±(θ ) = 1
2 (G1 ± G2), and

G1(θ ) = F ′(2r0 |sin θ |), G2(θ ) = F (2r0 |sin θ |)
2r0 |sin θ | .

Next we substitute φj = b+e2mπ ij/N + b−e−2mπ ij/N where
we assume that b± are real, and m is a strictly positive integer.
This leads to a 2 × 2 eigenvalue problem λ( b+

b−
) = M(m)( b+

b−
),

where

M(m) :=
[
I1(m) I2(m)
I2(m) I1(−m)

]
, m = 1,2, . . . , (7)

I1(m) = 4
N

N/2∑

l=1

G+

(
π l

N

)
sin2

[
(m + 1)

π l

N

]
,

I2(m) = 4
N

N/2∑

l=1

G−

(
π l

N

) [
sin2

(
π l

N

)
− sin2

(
m

π l

N

)]
.

Taking the limit N → ∞, we obtain

I1(m) = 4
π

∫ π
2

0
G+(θ ) sin2 [(m + 1)θ ] dθ, (8a)

I2(m) = 4
π

∫ π
2

0
G−(θ )[sin2(θ ) − sin2(mθ )]dθ . (8b)

The ring is linearly stable if the eigenvalues λ of (7) are
nonpositive for all integers m ! 1; otherwise it is unstable.
There are two possible types of instabilities. Ones in which
the ring is long-wave unstable, corresponding to an instability
of a low order mode (small m) but stability of higher order
modes. The second type corresponds to ill-posedness of the
ring in which the eigenvalues are positive in the m → ∞
limit and grow as m increases. In the latter case the ring
completely breaks up and often forms a fully two-dimensional
pattern. Ill-posedness in curve evolution problems is known
in other problems, most notably the Kelvin-Helmholtz in-
stability of the 2D vortex sheet [15,16]. However the types
of nonlinear structures seen here are completely different
from the vortex roll-up behavior familiar from incompressible
fluids.

An example of a stable ring is provided by the force F (r) =
r − r2, for which the matrix M(m) and its eigenvalues can be
explicitly computed. More generally, if F (0) > 0 and F is C2,
the asymptotics for large m yield trace M(m) ∼ F (0)

πr0
ln m > 0

as m → ∞, so that all high modes m are unstable. It follows
that a necessary condition for well-posedness of a ring is that

015203-2

[Kolokolnikov, Sun, Uminsky, Bertozzi, 2011]
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Numerical Methods: Recent Results.

particle
methods
• complement theoretical results:

repulsive attractive steady states
[Bertozzi, Sun, Kolokolnikov, Uminsky, Von Brecht
2011], [Balagué, Carrillo, Laurent, Raoul 2012]

• used to prove theoretical results:
finite time blowup, confinement

[Carrillo, DiFrancesco, Figalli, Laurent, Slepčev
2010, 2011]

• convergence of particle method [Carrillo, Choi, Hauray 2013]

other
numerical
methods
• developed finite volume method [Carrillo, Chertock, Huang 2014]

• convergence of finite difference
method to measure solutions, 1D

[James, Vauchelet 2014]
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Numerical Methods: Our Goal.

• Develop new numerical method for multidimentional aggregation equation

• Allow singular and non-singular potentials

• Prove quantitative estimates on convergence to classical solutions

• Validate sharpness of estimates with numerical examples

8 / 36



Blob Method for the Aggregation Equation.
.Theorem (C., Bertozzi 2014)..

......

Let K(x) have power law growth |x|s, s ≥ 2− d

(for simplicity of notation d ≥ 3, Newtonian potential admissible for d = 2).

Suppose ρ : Rd × [0, T ] → R+ is a smooth, compactly supported solution.

The blob method discretizes ρ0(x) on a mesh of size h and prescribes
• approximate particle trajectories X̃i,
• approximate density along particle trajectories ρ̃i,

so that for 1
2 ≤ q < 1 and m ≥ 4 (parameters specifying shape of blobs)

||Xi(t)− X̃i(t)||Lp
h
≤ Chmq ||ρi(t)− ρ̃i(t)||W−1,p

h
≤ Chmq ,

for 1 ≤ p <∞.
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Euler vs Aggregation: Similarities.
Vorticity formulation of Euler equations:

(V)

ωt + v · ∇ω = ω · (∇v)

v = Kd ∗ ω
material derivative−−−−−−−−−−→

Dω/Dt = ω · (∇v)

v = Kd ∗ ω

Biot-Savart kernel: K2(x) =
1

2π|x|2 (−x2, x1), K3(x)h = 1
4π

x×h
|x|3 .

v = ∇⊥∆−1ω

Aggregation equation:

(A)

ρt +∇ · (vρ) = 0

v = −∇K ∗ ρ
material derivative−−−−−−−−−−→

Dρ/Dt = −ρ(∇ · v)

v = −∇K ∗ ρ

Newtonian potential: K(x) = 1
d(d−2)ωd

|x|2−d (K(x) = − log |x|/2π when d = 2).
v = ∇∆−1ρ
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Euler vs Aggregation: Differences.

Euler Equations
• velocity is divergence free
• Biot Savart kernel

• 2 and 3 dimensions

Aggregation Equation
• mass is conserved
• Newtonian, Riesz, and non-singular

kernels (growth at infinity)
• d ≥ 1
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Aggregation equation: Lagrangian perspective.

Particle trajectories:

 d
dtX(α, t) = −∇K ∗ ρ(X(α, t), t)

X(α, 0) = α .

Density along trajectories:

 d
dtρ(X(α, t), t)= (∆K ∗ ρ(X(α, t), t)) ρ(X(α, t), t)

ρ(X(α, 0), 0) = ρ0(α) .

By conservation of mass, ρ(X(β, t), t)J(β, t) = ρ0(β),∫
∇K(x− y)ρ(y, t)dy =

∫
∇K(x−X(β, t))ρ(X(β, t), t)J(β, t)dβ

=

∫
∇K(x−X(β, t))ρ0(β)dβ .

... and similarly for ∆K ∗ ρ(X(α, t), t).
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Steps for blob method.

..1 Remove the singularity of K by convolution with a mollifier, Kδ = K ∗ ψδ.

..2 Replace ρ0 with a particle approximation on the grid hZd.

ρparticle
0 (y) =

∑
j∈Zd

δ(y − jh)ρ0jh
d
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Blob method for the aggregation equation.

Exact Particle Trajectories: d
dtX(α, t) = −

∫
∇K(X(α, t)−X(β, t))ρ0(β)dβ

X(α, 0) = α

Exact Density : d
dtρ(X(α, t), t) = ρ(X(α, t), t)

∫
∆K(X(α, t)−X(β, t))ρ0(β)dβ

ρ(α, 0) = ρ0(α)



Approx Particle Trajectories: d
dtX̃i(t) = −

∑
j ∇Kδ(X̃i(t)− X̃j(t))ρ0jh

d

X̃i(0) = ih

Approx Density : d
dt ρ̃i(t) = ρ̃i(t)

(∑
j ∆Kδ(X̃i(t)− X̃j(t))ρ0jh

d
)

ρ̃i(0) = ρ0(ih)

(For pure particle method, take δ = 0.)
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Heuristic interpretation of blob method.
When K is the Newtonian potential, v = −∇K ∗ ρ implies ρ = −∇ · v.
Applying this to the approximate velocity ṽ...

ρ̃alt(x, t) = −∇ ·

−
∑
j

∇Kδ(x− X̃j(t))ρ0jh
d

 =
∑
j

ψδ(x− X̃j(t))ρ0jh
d

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5
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Advantages of blob method..

• Avoids main source of numerical diffusion
• Only requires computational elements on support of density
• Inherently adaptive
• Accommodates singular kernels, up to and including the Newtonian

potential
• Arbitrarily high order rates of convergence, depending on the accuracy of

the mollifier and the widths of the blobs

Without regularization: fewer admissible potentials, slower rates of convergence.

These agree with the rate of O(h2−ϵ) for the Euler equations [Goodman, Hou,
Lowengrub 1990].
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Mollifier.
.Assumption..

......

Assume ψ is radial,
∫
ψ = 1, and for some m ≥ 4, L ≥ d+ 2

..1 Accuracy:
∫
xγψ(x)dx = 0 for 1 ≤ |γ| ≤ m− 1

..2 Regularity: ψ ∈ CL(Rd)

..3 Decay: |x|n|∂βψ(x)| ≤ C for all n ≥ 0

..1 ensures convolution with ψ preserves polynomials of order |α| ≤ m− 1,∫
(x− y)αψ(y)dy =

α∑
k=0

(
α

k

)
xα−k

∫
ykψ(y)dy = xα

∫
ψ(y)dy = xα.

..2 and ..3 ensure ∇Kδ,∆Kδ ∈ CL(Rd).
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Mollifier.
.Assumption..

......

Assume ψ is radial,
∫
ψ = 1, and for some m ≥ 4, L ≥ d+ 2

..1 Accuracy:
∫
xγψ(x)dx = 0 for 1 ≤ |γ| ≤ m− 1

..2 Regularity: ψ ∈ CL(Rd)

..3 Decay: |x|n|∂βψ(x)| ≤ C for all n ≥ 0

Example: d = 1, m = 4, L = +∞,

ψ(x) =
4

3
√
π
e−x

2

− 1

6
√
π
e−(x/2)2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0

5

10

15

Mollifier ψδ(x), m = 4

δ = 1
δ = .4
δ = .04
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Kernel.
.Assumption..

......

Suppose that K(x) =
∑N
n=1Kn(x).

For each Kn(x), there exists Sn ≥ 2− d such that

|∂βKn(x)| ≤ C|x|Sn−|β|, ∀x ∈ Rd \ {0}, |β| ≥ 0 .

If Sn = 2− d, we additionally require that Kn(x) is a constant multiple of the
Newtonian potential.

Let s = minn Sn be the smallest power of the kernel.

Example: K(x) = |x|a/a− |x|b/b, 2− d ≤ b < a.
s = b
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Discrete Lp norms.
.Definition..

......

For 1 ≤ p ≤ ∞,

||ui||Lp
h
=

∑
i∈Zd

|ui|phd
1/p

(ui, gi)h =
∑
i∈Zd

uigih
d

||ui||W 1,p
h

=

||ui||pLp
h
+

d∑
j=1

||D+
j ui||

p
Lp

h

1/p

||ui||W−1,p
h

= sup
{gi}∈W 1,p′

h

|⟨ui, gi⟩|
||gi||W 1,p′

h

D+
j is the forward difference operator in the jth coordinate direction.

We measure the convergence of X and v in Lph and we measure the
convergence of ρ in W−1,p

h .

This is because, in the most singular case when K is the Newtonian potential,
v = −∇K ∗ ρ =⇒ ρ = −∇ · v.
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Convergence.
.Theorem ( C., Bertozzi 2014 )..

......

Suppose...
• ψ ∈ CL(Rd) for L > s+ d,
• ρ : Rd × [0, T ] → R+ is a smooth, compactly supported solution,
• 0 ≤ hq ≤ δ ≤ 1/2 for some 1

2 < q < 1.

Then for 1 ≤ p <∞,

||Xi(t)− X̃i(t)||Lp
h
≤ C(δm + δ−(L−s−d)hL)

||ρi(t)− ρ̃i(t)||W−1,p
h

≤ C(δm + δ−(L+1−s−d)hL) ,

provided that for some ϵ > 0,

C(δm + δ−(L+1−s−d)hL) < δ2h1+ϵ/2 .
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Convergence of arbitrarily high order.
Take δ = hq for 1

2 < q < 1.
Then the technical condition C(δm + δ−(L+1−s−d)hL) < δ2h1+ϵ/2 holds.

By the previous theorem

||Xi(t)− X̃i(t)||Lp
h
≤ C(δm + δ−(L−s−d)hL) ≤ Cδm

||ρi(t)− ρ̃i(t)||W−1,p
h

≤ C(δm + δ−(L+1−s−d)hL) ≤ Cδm︸︷︷︸
for L sufficiently large

.Theorem ( C., Bertozzi 2014 )..

......

Let δ = hq. If L is sufficiently large, then for 1/2 ≤ q < 1, m ≥ 4,

||Xi(t)− X̃i(t)||Lp
h
≤ Chmq

||ρi(t)− ρ̃i(t)||W−1,p
h

≤ Chmq

Benefit of blob methods: arbitrarily high order of convergence.
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Sketch of proof: convergence of particle trajectories.
Velocity
Exact v(x, t) = −

∫
∇K(x−X(β, t))ρ0(β)dβ

Approx ṽ(x, t) = −
∑
j ∇Kδ(x− X̃j(t))ρ0jh

d

Approx along exact traj. vh(x, t) = −
∑
j ∇Kδ(x−Xj(t))ρ0jh

d

Main Steps:
..1 Control difference between exact and approximate velocity by separately

estimating consistency and stability,

|v(x, t)− ṽ(x, t)| ≤ |v(x, t)− vh(x, t)|+ |vh(x, t)− ṽ(x, t)| .

..2 Use Gronwall's inequality to deduce control of particle error.
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Consistency..Proposition (Consistency) (C., Bertozzi 2014 )..

...... ∥v − vh∥L∞
h

≤ C
(
δm + δ−(L−s−d)hL

)
.

|v(x, t)− vh(x, t)|

= |v(x, t)−∇Kδ ∗ ρ(x, t)|+ |∇Kδ ∗ ρ(x, t)− vh(x, t)|

= |∇K ∗ ρ(x, t)−∇Kδ ∗ ρ(x, t)|+

∣∣∣∣∣∣∇Kδ ∗ ρ(x, t)−
∑
j

∇Kδ(x−Xj(t))ρ0jh
d

∣∣∣∣∣∣
≤ |∇K ∗ ρ(x, t)−∇K ∗ ρ ∗ ψδ(x, t)|︸ ︷︷ ︸

ψ is accurate of order m

+C||∇Kδ||W 1,L(BR)h
L︸ ︷︷ ︸

quadrature, kernel estimates

≤ Cδm + Cδ−(L−s−d)hL

.Lemma (Regularized Kernel Estimates) (C., Bertozzi 2014)..

......For L > s+ d, ∥∇Kδ∥W 1,L(BR) ≤ Cδ−(L−s−d).
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Stability..Proposition (Stability) (C., Bertozzi 2014 )..

......

If ||X(t)− X̃(t)||L∞
h

≤ δ, then for 1 < p <∞

||vh(t)− ṽ(t)||Lp
h
≤ C||X(t)− X̃(t)||Lp

h
.

vhi − ṽi =
∑
j

∇Kδ(Xi − X̃j)ρ0jh
d −

∑
j

∇Kδ(Xi −Xj)ρ0jh
d

+
∑
j

∇Kδ(X̃i − X̃j)ρ0jh
d −

∑
j

∇Kδ(Xi − X̃j)ρ0jh
d

=
∑
j

D2Kδ(Xi −Xj + y
(1)
ij )(Xj − X̃j)ρ0jh

d

+ (X̃i −Xi)
∑
j

D2Kδ(Xi −Xj + y
(2)
ij )ρ0jh

d

∥vh − ṽ∥Lp
h
≤ C||D2Kδ ∗ [(X − X̃)ρ]||Lp + C||(X − X̃)(D2Kδ ∗ ρ)||Lp

≤ C||X − X̃||Lp

≤ C||X − X̃||Lp
h

use mean
value theorem
to pull out
X − X̃

discrete →
continuous
convolution
and Lp

h → Lp

apply
Calderón-
Zygmund or
Young
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Convergence.
Therefore, for ||X(t)− X̃(t)||L∞

h
≤ δ,

∥v(t)− ṽ(t)∥Lp
h
≤ ∥v(t)− vh(t)∥Lp

h
+ ∥vh(t)− ṽ(t)∥Lp

h

≤ C(δm + δ−(L−s−d)hL) + C∥X(t)− X̃(t)∥Lp
h(BR0

)

With Gronwall's inequality and a bootstrap argument, we obtain the result:

||X(t)− X̃(t)||Lp
h
≤ C(δm + δ−(L−s−d)hL) .
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Newtonian potential, one dimension.
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E
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h Error

density slope ≈ 3.55
particle slope ≈ 3.57

h = 0.04

q = 0.9

m = 4

ρ0(x) = (1 − x2)20+

blowup: t = 1

• approximate particle trajectories bend to avoid collision
• convergence of method agrees with theoretically predicted 3.6 = m · q
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Various kernels, one dimension: blob vs particle.
particle m = 4 m = 6

K
(x
)
=

(−
∆
)−

1

10�4

10�8

10�12

10�16

Er
ro

r

L1
h Error

particle slope ⇡ 2.00
density slope ⇡ 3.56
particle slope ⇡ 3.59

density slope ⇡ 4.40
particle slope ⇡ 5.30

K
(x
)
=

|x
|3
/3

10�4 10�3 10�2

h

density slope ⇡ 2.01
particle slope ⇡ 3.77

density slope ⇡ 3.56
particle slope ⇡ 3.58

density slope ⇡ 5.18
particle slope ⇡ 4.79

• Blob method is more beneficial for more singular kernels
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two dimensions, aggregation.
K(x) = log |x|/2π K(x) = |x|2/2 K(x) = |x|3/3

Position -0.5 0.0 0.5

Ti
m

e

0

1

2

3

• finite vs infinite time collapse
• delta function vs delta ring h = 0.04, q = 0.9, m = 4
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two dimensions: repulsive-attractive kernels.
K(x) = |x|4/4− log |x|/2π K(x) = |x|4/4− |x|3/2/(3/2) K(x) = |x|7/7− |x|3/2/(3/2)

t=
0.

0
t=

0.
5

t=
15

.0

d =0.00

t=
25

.0

d =0.32

t=
0

t=
4

t=
8

d =0.00

t=
12

d =0.32

t=
0

t=
75

t=
17

5

d =0.00

t=
22

5

d =0.32

• large δ affects steady state behavior
• illustrates role of kernel's regularity in dimensionality of steady states

[Balagué, Carrillo, Laurent, Raoul 2013] 34 / 36



Future Work.

• Keller-Segel equation [Yao, Bertozzi 2013]
• Interplay between particle methods and theoretical results

• Finite time blowup, confinement [Carrillo, DiFrancesco, Figalli, Laurent, Slepčev
2010, 2011]

• Existence of weak measure solutions [Lin, Zhang 2000]

• ongoing work with Ihsan Topaloglu (Fields Institute): Γ-convergence of
regularized interaction energy; convergence of blob method to steady states

Eδ(ρ) =
1

2

∫
Rd

∫
Rd

ρ(x)Kδ(x− y)ρ(y)dxdy.

• ongoing work with Andrea Bertozzi: long time error estimates for repulsive
attractive kernels?
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Thank you!
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Backup
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Associated particle system and gradient flow.
Given the blob method particle trajectories d
dtX̃i(t) = −

∑
j ∇Kδ(X̃i(t)− X̃j(t))ρ0jh

d

X̃i(0) = ih ,

we may define the corresponding particle measure

ρ̂(x, t) =
∑
j

δ(x− X̃j(t))ρ0jh
d .

This is
• energy decreasing
• formally Wasserstein gradient flow

for the regularized energy functional

Eδ(ρ) =
1

2

∫
Rd

∫
Rd

ρ(x)Kδ(x− y)ρ(y)dxdy.

(For pure particle method, take δ = 0.)
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Blowup.
For which kernels does finite time blowup occur?

Intuition from particle approximation: ρ(x, t) =
∑N
j=1 δ(x−Xj(t))mj

v(x, t) = −
∫

∇K(x− y)ρ(y, t)dy = −
N∑
j=1

∇K(x−Xj(t))mj

d

dt
Xi(t) = −

N∑
j=1

∇K(Xi(t)−Xj(t))mj

−1 0 1

−1

0

1

−∇K(x) =−2x

−1 0 1

−1

0

1

−∇K(x) =− 1
2πx
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Osgood Condition.
Simple case: particle moving toward minimum of attractive potential:
K(x) = k(|x|)

d

dt
X(t) = −∇K(X(t)) X(0) = x0

d

dt
r(t) = −k′(r(t)) r(0) = R0

To move a distance dr, it takes time dr
|k′(r)| .

Thus, the particle reaches the origin at time

T =

∫ R0

0

dr

k′(r)
.
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Osgood Condition.
.Theorem (Osgood Condition) (Bertozzi, Carrillo, Laurent 2009)..

......

A kernel K satisfies the Osgood condition in case∫ R0

0

dr

k′(r)
<∞ .

This is a necessary and sufficient condition for finite time blowup.

K(x) = |x|α: α ≥ 2 =⇒ no finite time blowup, α < 2 =⇒ finite time blowup

−1 0 1

−1

0

1

−∇K(x) =−2x

−1 0 1

−1

0

1

−∇K(x) =− 1
2πx
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K = Newtonian potential.
Rewriting the aggregation equation in terms of the material derivative
D
Dt =

∂
∂t + v · ∇,ρt +∇ · (vρ) = 0

v = −∇K ∗ ρ .
material derivative−−−−−−−−−−→

Dρ
Dt = −ρ(∇ · v)

v = −∇K ∗ ρ .

When K is the Newtonian potential, v = −∇K ∗ ρ implies ρ = −∇ · v, so
Dρ

Dt
= ρ2

If X(α, t) denotes the particle trajectories induced by the velocity field v,
d

dt
ρ(X(α, t), t) = ρ(X(α, t), t)2 .

Hence,

ρ(X(α, t), t) =


(

1
ρ0(α)

− t
)−1

if ρ0(α) ̸= 0

0 if ρ0(α) = 0.
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K = Newtonian potential.

ρ(X(α, t), t) =


(

1
ρ0(α)

− t
)−1

if ρ0(α) ̸= 0

0 if ρ0(α) = 0

blowup: If ρ0(α) > 0 for any α, the first blowup occurs at time t = ||ρ0||−1
L∞ .

patch solutions: If ρ0(α) = 1Ω(α), for Ωt := Xt(Ω),

ρ(X(α, t), t) = (1− t)−11Ω(α) = (1− t)−11Ωt(X(α, t)) .

Patch solutions collapse onto a set of Lebesgue measure zero at t = 1.

[Bertozzi, Laurent, Léger 2012]
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2D Euler equations: Lagrangian perspective..
For simplicity of notation, write K = K2.

Particle trajectories:

 d
dtX(α, t) = K ∗ ω(X(α, t), t)

X(α, 0) = α .

Since the velocity field is divergence free and ω(X(β, t), t) = ω0(β),∫
K(x− y)ω(y, t)dy =

∫
K(x−X(β, t))ω(X(β, t), t)dβ

=

∫
K(x−X(β, t))ω0(β)dβ .

Thus the particle trajectories evolve according to d
dtX(α, t) =

∫
K(X(α, t)−X(β, t))ω0(β)dβ

X(α, 0) = α .
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Blob method for the 2D Euler equations.
Steps for blob method:

..1 Remove the singularity of K by convolution with a mollifier.
Write Kδ = K ∗ ψδ.

..2 Replace ω0 with a particle approximation on the grid hZd.

ωparticle
0 (y) =

∑
j∈Zd

δ(y − jh)ω0jh
d

Exact Particle Trajectories:

 d
dtX(α, t) =

∫
K(X(α, t)−X(β, t))ω0(β)dβ

X(α, 0) = α .

Approx Particle Trajectories:

 d
dtX̃i(t) =

∑
j Kδ(X̃i(t)− X̃j(t))ω0jh

d

X̃i(0) = ih .
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Blob Method for the 2D Euler Equations.
• First used by [Chorin,1973]
• [Hald, Del Prete 1978] proved 2D

convergence
• [Hald, 1979] proved second order

convergence in 2D for arbitrary
time intervals [0, T ]

• [Beale, Majda 1982] proved
convergence in 2D and 3D with
arbitrarily high-order accuracy

• [Cottet, Raviart 1984] simplified 2D
and 3D convergence proofs

• [Anderson, Greengard 1985]
modified the 3D blob method,
considered time discretization

148 M .  Nitsche and R. Krasny 

(b) 
5.1 I 

-5.1 
8.0 1 0 

FIGURE 5. Comparison at t = 1.45. (a) Experiment, from Didden (1979). (b) Simulation, S = 0.2. 

3.2. Flow field 
Figure 7 shows the computed velocity field for 6 = 0.2, before and after the piston 
shutoff time. The vortex sheet and material line appear as a dashed curve in the lower 
half-plane. At t = tiff, the ring has moved away from the edge and the velocity across 
the tube exit-plane resembles a slug-flow profile. A small region of negative radial 
velocity occurs near the edge, arising from the ring-induced circulatory flow. As a 
result, the vortex sheet appears to leave the edge at a slight inward angle. A similar 
feature can be seen in the experiment (figure 5a). At t = t&, the velocity field near the 
edge is completely changed. The vortex ring induces a starting flow around the edge 
from outside to inside the tube, leading to the formation of a counter-rotating ring for 
t ’ t o w  

Figure 8 presents the velocity profiles along the tube exit-plane for t < tOff .  Didden’s 
(1979) experimental measurements are on the left and the computed profiles for 
6 = 0.2 are on the right. As will be seen, the computed profiles are not uniformly valid 
up to the edge. In keeping with the idea of the vortex-sheet model as an asymptotic 
approximation for the outer flow, the computed profiles should be judged on the extent 
to which they capture the experimental flow away from the edge. 

Figure 8(a, b) plots the axial velocity u(L, r )  for 0 < r < 2.5, across the tube opening. 
The experimental profiles satisfy the no-slip condition on the tube wall, but the 
computed profiles do not. Away from the wall however, there is reasonably good 
agreement between simulation and experiment. Owing to the starting flow around the 
edge, the axial velocity at small times has a peak near the wall. At later times, as the 
ring moves away from the edge, the axial velocity becomes almost uniform across the 
tube opening, increasing to a slightly higher value than the driving velocity U,  = 4.6. 
At t = 1 .O, 1.6, the computed profile is uniform over a smaller portion of the opening 
than in the experiment. 

Figure 8(c, d )  plots the axial velocity u(L, r )  for 2.5 < r < 3.5, outside the tube. At 

Comparison at t = 1.45. (a) Experiment, from
Didden (1979). (b) Simulation, δ = 0.2.

[Nitsche, Krasny 1994]
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Newtonian potential, one dimension: patch initial data.
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density slope ≈ 0.89
particle slope ≈ 1.87

h = 0.04

q = 0.9

m = 4

ρ0(x) = 1[−1,1]

blowup: t = 1

• particle trajectories bend, densities round
• lower order accuracy (≈ 0.9) compared to regular initial data (≈ 3.6)
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Newtonian potential, one dimension: blob vs. particle.
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ρ0(x) = (1 − x2)20+

blowup: t = 1

• blob has higher order accuracy (≈ 3.6) compared to particle (≈ 2)
• trajectories computed by pure particle method collide at blowup time
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