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Aggregation Equation

L4V (p)=0  p(0,t) = po(t) >0
v=—-VKxp.
Applied interest:
* K(x)=|z|"/a—|z®/b, —d < b < a, social aggregation in biology
° K(x)=—log|z|/2m, evolution of vortex densities in superconductors

Mathematical interest:
* non-local
* blowup
e rich structure of steady states

e gradient flow in the Wasserstein metric: % =—-VwE(p)

Vw) =5 (5 ) B =g [ [ s notsdy.
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Particle Approximation and Wasserstein Gradient Flow

Suppose K is radial, continuously differentiable, and convex and we seek a

weak solution of the form

pparticle(l.vt) — Z&(x - X; (t))mj .

Then the velocity field would be given by

/VKQ:— ply, t)dy = — ZVK:E—

and pPartice s g weak solution in case

ZVK

Z 4 4% X

X;j(8))m; -

K(x) = 5z log|x|

t)m; ,
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[Kolokolnikov, Sun, Uminsky, Bertozzi, 2011]
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Numerical Methods: Recent Results
particle methods

e complement theoretical results: [Bertozzi, Sun, Kolokolnikov, Uminsky, Von Brecht
repulsive attractive steady states  2011], [Balagug, Carrillo, Laurent, Raoul 2012]

e used to prove theoretical results:  [Carrilo, DiFrancesco, Figalli, Laurent, Slepdev
finite time blowup, confinement 2010, 2011]

e convergence of particle method [Carrillo, Choi, Hauray 2013]

other numerical methods
e developed finite volume method [Carrillo, Chertock, Huang 2014]

e convergence of finite difference  [James, Vauchelet 2014]
method to measure solutions, 1D



Numerical Methods:

* Develop new numerical method for multidimentional aggregation equation
* Allow singular and non-singular potentials
* Prove quantitative estimates on convergence to classical solutions

* Validate sharpness of estimates with numerical examples



Blob Method for the Aggregation Equation

Theorem (C., Bertozzi 2014)
Let K (x) have power law growth |z|%, s > 2 — d
(for simplicity of notation d > 3, Newtonian potential admissible for d = 2).

Suppose p : RY x [0, T] — R+ is a smooth, compactly supported solution.

The blob method discretizes py(x) on a mesh of size h and prescribes
* approximate particle trajectories X;,
* approximate density along particle trajectories p;,
So that for % < g < 1and m > 4 (parameters specifying shape of blobs)
1Xi(t) = Xi(@®)llez < CR™ |lpi(t) = pi(D)llyy 10 < CH™

forl <p < .
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Euler vs Aggregation: Similarities

Vorticity formulation of Euler equations:

w+v-Vw=w- (Vo) material derivative DW/Dt =w- (Vo)
Rkl
v=Kg*xw v=Kg*xw

>

Biot-Savart kernel: Ky(x) = ﬁ(—x%fm), Ks(z)h = ﬁTxXP .
v=V=IiA~lw

Aggregation equation:

pr+ V- (’l)p) =0 material derivative DP/Dt =—p(V-v)
—_
v=—-VK % P v=—VK % p

(A)

Newtonian potential: K (x) = gz, 21>~ (K(2) = —log |z|/2m when d = 2).

v=VA~lp



Euler vs Aggregation: Differences

Euler Equations Aggregation Equation
* velocity is divergence free ° mass is conserved
e Biot Savart kernel * Newtonian, Riesz, and non-singular

kernels (growth at infinity)

e 2 and 3 dimensions e d>1
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Aggregation equation: Lagrangian perspective

%X(m t) = —VK % p(X(a,t),t)

Particle trajectories:
X (e, 0) =a.

Fp(X(a,t),t)= (AR« p(X (o 0). 1) p(X(e,t),1)

Density along trajectories:
p(X(O[, O)a O) = po(Ol) :

By conservation of mass, p(X (5,t),t)J(8,t) = po(5),
[ VK- oty = [ VK - X(3.0)p(X(5.0.0)(5.0)d5

:/VK@—Xw@mdmw-

... and similarly for AKX = p( X (o, 1), 1).



Steps for blob method

© Remove the singularity of K by convolution with a mollifier, K5 = K * 5.

® Replace py with a particle approximation on the grid hZ?.

pE () = Y 8y — jh)po,h”
jezd



Blob method for the aggregation equation

Exact Particle Trajectories: 4 X (a,t) = — [ VK (X (a,t) — X(5,t))po(B)dS

Exact Density : 2 p(X (i, t),t) = p(X (e, t),t) [ AR (X (o t) — X(5.6))po(3)d5
p(e, 0) = po(c)

Approx Particle Trajectories: £ X;(t) = — > VI (X, (1) — X;(t))po,; 1
X;(0) = ih

Approx Density : 45.(t) = pilt) <X} AK5(X;(t) X,(/)),)(,jh")
pi(0) = po(ih)

(For pure particle method, take § = 0.)



Heuristic interpretation of blob method

When K is the Newtonian potential, v = =V K x p implies p = —V - v.
Applying this to the approximate velocity o...

p~alt( ( ZVKO €Tr — . /)()}h ) Zw& p()jh
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Advantages of blob method

* Avoids main source of numerical diffusion
* Only requires computational elements on support of density
* Inherently adaptive

* Accommodates singular kernels, up to and including the Newtonian
potential

¢ Arbitrarily high order rates of convergence, depending on the accuracy of
the mollifier and the widths of the blobs

Without regularization: fewer admissible potentials, slower rates of convergence.

These agree with the rate of O(h?~¢) for the Euler equations [Goodman, Hou,
Lowengrub 1990].
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Mollifier

Assumption

Assume 1 is radial, [+ =1, and forsome m >4, L > d + 2
© Accuracy: [z7¢(z)dz =0for1 <|y|<m—1
® Regularity: 1 € CL(R?)
©® Decay: |z|"|0Py(x)| < Cforalln >0

@ ensures convolution with ¢ preserves polynomials of order || < m — 1,

Jemrvwi= 32 (3)et v =a [owa =
®and @ensure VK5, AKs € CF(RY).
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Mollifier

Assume 1 is radial, [+ =1, and forsome m >4, L > d + 2

© Accuracy: [z7¢(z)dz =0for1 <|y|<m—1

® Regularity: 1 € CL(R?)

® Decay: |z|"|0Py(z)| < Cforalln >0

Example: d=1,m=4, L =

4 2 1
Y(x)

“3/7 6

Mollifier ys(x), m =4
T T T T

0

S O O
n n n
S on =
?
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Kernel

Assumption
Suppose that K (z) = YN | K, ().

For each K, (z), there exists S,, > 2 — d such that
|0° Kn(2)| < Cla|*~1P!, Vo e R4\ {0}, 18] > 0.

If S, = 2 — d, we additionally require that K, (x) is a constant multiple of the
Newtonian potential.

Let s = min,, S,, be the smallest power of the kernel.

Example: K (z) = |z|*/a — |2|*/b, 2 —d < b < a.

s=15b



Discrete P norms

Definition
Forl <p < oo,
1/p
uillzy = | D luaf?h (i g = 3 wigih
i€zZd i€Z4
1/p
PN Dl ? (i, 92|
lillwpr = | Heillzy + 3 1DFwillZy | llwie = sup - oemg=es
i=1 {giyew, = 11ZHw,»
Dj is the forward difference operator in the j** coordinate direction.

We measure the convergence of X and v in L} and we measure the
convergence of pin W, "7,

This is because, in the most singular case when K is the Newtonian potential,
v=—-VKxp = p=-V-o.

22/36



Convergence

Theorem ( C., Bertozzi 2014 )
Suppose...

¢y e CE(RY) for L > s+,

* p:R9x[0,T] = Rt is a smooth, compactly supported solution,
*0<h?<é§<1/2forsome i <q<1l

Then for1 < p < o,

1) — Xa(®)llpz < O™ + 5~ E=s=Dpk)
10i(t) = Aa(Olly 10 < O@E™ + 6~ EHZo=DpE) |

provided that for some e > 0,

C((Sm +57(L+lfsfd)hL) < 52h1+€/2.




Convergence of arbitrarily high order
Take § = hifor i < ¢ < 1.

Then the technical condition C/(6™ + §=(E+1=s=dIpl) < §2p1+< /2 holds.

By the previous theorem

1Xi(t) = Xi(t)||pp < CO™ + 6~ E7DpF) < cem
1pi(t) = Bi(Dllyy 10 < CE™ + 8- EH==Dpty < g™

for L sufficiently large

Theorem ( C., Bertozzi 2014 )

Let § = h4. If L is sufficiently large, then for 1/2 < g < 1, m > 4,

1X:(t) — Xi(®)||p < CR™
|lpi(®) = pi(®)llyy—1» < CR™

Benefit of blob methods: arbitrarily high order of convergence.
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Sketch of proof: convergence of particle trajectories

Velocity

Exact v(z,t) =—[VE(@—X(8,1)po(B)dB
Approx o(w,t) ==, VEs(z — X;(t))posh*
Approx along exact traj.  v"(x,t) = =3 VK;(z — X;(t))po,;h*
Main Steps:

© Control difference between exact and approximate velocity by separately
estimating consistency and stability,

lo(z,t) — 0(z,t)| < |v(z,t) — " (2, t)] + [0 (2, t) — 0(x,1)] .

® Use Gronwall's inequality to deduce control of particle error.



Consistency

Proposition (Consistency) (C., Bertozzi 2014 )

H,U . ,Uh”Lzo <C (5m + 5—(L—s—d)hL> )

lv(z,t) — v (z,1)]
= |v(z,t) — VKs % p(z,t)| + |[VEKs * p(x,t) — 0" (x,1)|

= |VK x p(x,t) — VK5 x p(x,t)| + |VKs * p(z,t) ZVK(; (x—X ))pojh

< VK« p(x,t) = VK % pxps(w,1)] +C||VK6||W17L(BR)h

1 is accurate of order m quadrature, kernel estimates

< CO§m 4 5 sl

Lemma (Regularized Kernel Estimates) (C., Bertozzi 2014)
For L > s +d, ||VK5||W1,L(BR) < 0 (E—s—d),
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Stability

Proposition (Stability) (C., Bertozzi 2014)

If| X (t) — X (t)||Lee < 6, then for 1 < p < oo

0" (t) = 5(O)lp < CIX(t) = X(®)llpp -

use mean
- value theorem
J ~ ~ : ~ to pull out
+ ) VE(X; = X))po,ht =D VKs(Xi — Xj)posh® X - X
J J

z',l-' -0 = ZVK&(Xi — X'j)pojhd — Z VKs(X; — Xv,)pu‘/h(l

]

= ZDQK(;(Xi - X; —I—yl(;))(Xj —)N(j)pojhd discrete —
j continuous

+ (X = X)) Y D*Ks(Xi — X; + 43 )po;h
J

convolution
and L} — LP

lo" = ollp < ClID*Ks + [(X = X)pll|r + Cl|(X = X)(D* K5 * p)l|1e 7

B Calderon-
< C||1X — X||L» Zygmund or

< CIIX - Ky voung
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Convergence
Therefore, for [| X (t) — X (t)||z= < 4,

lo(8) = a() e < [lo(t) — " (1)]| + [[o" (1) = o(t)|l e
<C(E™ + 6" IRN) + C|IX (1) — X ()] 12 (B, )

With Gronwall's inequality and a bootstrap argument, we obtain the result:

1X () = X(®)l|pp < CO™ +6F7 DRk
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Newtonian potential, one dimension

1.0 quticle Traiectori‘es 5 Density
N T I T
h=0.04
4 approx
—  exact q=09
Eos 5’ m=4
= 5}
T2 2420
1 po(z) = (1 — &)
0.0 | I I I | I I blowup: t =1
“-1.0 -05 0.0 0.5 1.0 —04 =02 0.0 0.2 0.4
Position Position
1
1.0 ‘ Particle Tl"aiectories ‘ : ‘Lh Error -
7\ N 10751 e
87 o
5 o’ c‘ﬁ@
S10-0f & ef ]
O density slope ~ 3.55
e particle slope ~ 3.57
0.0 | | | 10713 - — — 4
: —0.1 0.0 0.1 10 10 10 10
Position h

e approximate particle trajectories bend to avoid collision
e convergence of method agrees with theoretically predicted 3.6 = m - ¢



Newtonian potential, one dimension

1.0 quticle Traiectori‘es 5 Density
N I T
4 - approx
— exact
=3
£os 5
= T2
1
0'0 L Il L L L | L L
—-1.0 -05 0.0 .5 1.0 —04 =02 0.0 0.2 0.4
Position Position
1
1.0 ‘ Particle Tl"aiectories ‘ : ‘Lh Error -
2/ 103 =
87 o
5 o’ cs?@
S0 & o7 i
O density slope ~ 3.55
s © particle slope ~ 3.57
10~ | T T
00— 0.0 0T 0% i0° 102 10!
Position h

e approximate particle trajectories bend to avoid collision

h =0.04
q=0.9
m =4

po(@) = (1 — &%)

blowup: t =1

e convergence of method agrees with theoretically predicted 3.6 = m - ¢



Various kernels, one dimension:

particle m=4 m==0
B L} Error
1074+ T h S -
N e B
| .,—M 5‘6" R
—~ 8 o-© ’ ’
< 10 5 £ ﬁ,ﬁﬂ 4 s i
(- € n <
—| E L . P
II 10-12 N Egé_’g 1 EEFFEF ;;&P ]
5 ’ o density slope ~ 3.56 © density slope ~ 4.40
k 6 ¢ particle slope ~ 2.00 o particle slope ~ 3.59 ¢ particle slope ~ 5.30
10~ | T T 1] T T T T
I =7
™ ot o sy
~— _a E,'ZO’ H/:,Q
R e o e o
8 = o -+ P g o R
S e P
| o £ 7
0 ml? °
M o density slope ~ 2.01 o density slope ~ 3.56 o density slope ~ 5.18
© particle slope ~ 3.77 o particle slope ~ 3.58 o particle slope ~ 4.79
I T T T T £
1074 1073 1072

¢ Blob method is more beneficial for more singular kernels




two dimensions, aggregation
K(z) = log |z| /27 K(x) = |2[?/2

A

e delta function vs delta ring h=0.04,¢=09m=4

e finite vs infinite time collapse
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two dimensions:

K(z) = |z*/4 —log|z|/2m | K(x) = |a|*/4 - |z[*//(3/2)

K(x) = |2|"/7 — |2[*2/(3/2)

t=0.0

=05

t

=15.0

t

t=25.0

4 U \ i ! 4

I i

\ \
§=0.00 §6=0.32 6=0.00 §=0.32

* large ¢ affects steady state behavior

t=0

=75

t

175

t

t=225

1

T

L

i
—=

4
|
I
pu

y 4 -

~

il

i

d

|
6 =0.00

|
6 =0.32

e jllustrates role of kernel's regularity in dimensionality of steady states

[Balagué, Carrillo, Laurent, Raoul 2013]



Future Work

Keller-Segel equation [Yao, Bertozzi 2013]
¢ Interplay between particle methods and theoretical results

¢ Finite time blowup, confinement [Carrillo, DiFrancesco, Figalli, Laurent, SlepCev
2010, 2011]
* Existence of weak measure solutions [Lin, Zhang 2000]

* ongoing work with lhsan Topaloglu (Fields Institute): T'-convergence of
regularized interaction energy; convergence of blob method to steady states

Bip) =5 | [ o@Ksta = pptu)dady.

* ongoing work with Andrea Bertozzi: long time error estimates for repulsive
attractive kernels?



Thank youl!
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Associated particle system and gradient flow

Given the blob method particle trajectories
LXlt) =~ X, V(K0 ~ X, (0o
X;(0) =ih,

we may define the corresponding particle measure
Z O(x — pojh .
This is
* energy decreasing

¢ formally Wasserstein gradient flow

for the regularized energy functional

- / d / pl@)Ks(w = y)p(y)dedy.

(For pure particle method, take 6 = 0.)



Blowup

For which kernels does finite time blowup occur?

Intuition from particle approximation: p(z,t) = Z;.V:l oz — X;(t))m;

/vm— ply.t) va— (£)m;

K(x) = 55 log x|
4 —VK(x) = —5
< T v T v » T
1
| 0 ~ 1 14 >
- 'S \ / a
~ T
N 0.5 R I S
N L .
“To Z10 —1 0 1
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Osgood Condition

Simple case: particle moving toward minimum of attractive potential:
K(z) = k(|lz])

d
ZX(0) = —VE(X(1) X(0) =0

d /
(1) =~k (r(t) (0)=Ro

To move a distance dr, it takes time “jﬁ.

Thus, the particle reaches the origin at time

Ro
T:/ dar
o K(r)



Osgood Condition

Theorem (Osgood Condition) (Bertozz, Carrillo, Laurent 2009)

A kernel K satisfies the Osgood condition in case

/RO _dr < 0
o K(r) '

This is a necessary and sufficient condition for finite time blowup.

K(z) = |z|*: o > 2 = no finite time blowup, a < 2 = finite time blowup

K(x) = 5zloglx]

—VK(x) = —5

e -

0 1* Al 14 Id

N

S TR G

05 Lo
\_1\—\//()1 . \ >
0 -1 ~1 0 1
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K = Newtonian potential

Rewriting the aggregation equation in terms of the material derivative
D _
Dt — ot +v- V,

pt +V-(vp) =0 material derivative % =—p(V-v)
=
v=—-VK=xp. v=—-VK=xp.

When K is the Newtonian potential, v = =V K % p implies p = —V - v, s0O

Do _
Dt
If X(«,t) denotes the particle trajectories induced by the velocity field v,
d
%p(X(a,t),t) = p(X(a,t),t)*.
Hence,




K = Newtonian potential

p(X(a,t),t) = (ﬁ—t)i if po(cr) # 0

0 if po(a) =0
blowup: If po(a) > 0 for any a, the first blowup occurs at time ¢ = || 0|7 % -
patch solutions: If po(a) = 1g(a), for Q; := X4(Q),
p(X(a,t),t) = (1= t) o) = (1 - 1) '1o, (X (a,1)) .

Patch solutions collapse onto a set of Lebesgue measure zero at ¢ = 1.

2
A 1
\
\
\
4 0]
/
%
/ 1
2

[Bertozzi, Laurent, Léger 2012]
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2D Euler equations: Lagrangian perspective

For simplicity of notation, write K = K.

d )

£X(a,t) =K *w(X(a,t),t
Particle trajectories: { 4 (a,2) (X(a,t),t)

X(O[7O) = .

Since the velocity field is divergence free and w(X (8,t),t) = wo(B),
[ K@= vttty = [ Ko - X(5.0)(X(5.0, 048
— [ Ko = X(6.0)wn(8)d5

Thus the particle trajectories evolve according to

LX(a,t) = [K(X(a,t)— X(B,t)wo(B)dB
X(a,0) =a.



Blob method for the 2D Euler equations
Steps for blob method:

© Remove the singularity of K by convolution with a mollifier.
Write K5 = K * ’(ﬂg.

® Replace wy with a particle approximation on the grid hZ?.

pamcle Z 5 y jh WOJ

JEZ?

Exact Particle Trajectories: {;tX(Oé’ t) =[EK(X(at) = X(B,1))wo(B)dB

X(a,0) =a.

LX:(t) =2, Ks(Xi(t) — X;(t))wosh?

Approx Particle Trajectories: {df ( )( ) 2 Ka(Xilt) = X, (#) oz
i(0 =ih.



Blob Method for the 2D Euler Equations

* First used by [Chorin,1973] g 172
« [Hald, Del Prete 1978] proved 2D LR

convergence %\ )

* [Hald, 1979] proved second order L5
convergence in 2D for arbitrary

time intervals [0, T'] .
* [Beale, Majda 1982] proved "fv 7~
convergence in 2D and 3D with -

arbitrarily high-order accuracy

’ 15.0
¢ [Cottet, Raviart 1984] simplified 2D  Comparison at t = 1.45. (a) Experiment, from
and 3D convergence proofs Didden (1979). (b) Simulation, 6 = 0.2.

[Nitsche, Krasny 1994]
* [Anderson, Greengard 1985]
modified the 3D blob method,
considered time discretization



Newtonian potential, one dimension: patch initial data

quticle Traiector'}es - Deqsitv : :
0.8 5 s T
H | —  exact
=4 | |
Q = 1
£ 53
=04 =
2 |
I S
0.0 L L A "‘ L ' L \ L ‘l' i‘u
—-1.0 05 0.0 0.5 1.0 —-1.0 —-0.5 0.0 0.5 1.0
Position Position
1.00 Particle Trajectories L,ll Error
. T oD R T T T
10724 mem "
el
0.95 o e
: : 107° e
&= - 5 L o
0.90 P
10781 o density slope ~ 0.89
o particle slope ~ 1.87
0.85 L L L T P T P T
—0.05 0.00  0.05 10-% 1073 1072 107"

* particle trajectories bend, densities round

Position

h

h =0.04
q=20.9
m =4

po(z) = 1[—1,1)

blowup: t =1

* |ower order accuracy (=~ 0.9) compared to regular initial data (~ 3.6)



Newtonian potential, one dimension: blob vs.

1.0

: Particle Tl“aiectories :

h

L
0.0
Position

: Particle Tl“aiectories :

1.0
(5}
EO05
=
00" 47 0.0 01
Position

Error

Error

L} Error
T T m/
1051 Ir'/ .0 il
’ P
Wﬂ ’éggsz
10-10L :j;';gn |
O density slope ~ 3.55
5 ¢ particle slope ~ 3.57
10~ T T
10-* 1073 1072 107!
h
L} Error
104 2 :
L€
s
10-6 s
Py
,er
10-8 o&ézoeﬂ
o o particle slope ~ 2.00
10710 1073 1072 107!
h

particle

h =0.04
q=20.9
m =4

po(@) = (1 - o)

blowup: t =1

¢ blob has higher order accuracy (~ 3.6) compared to particle (~ 2)
e trajectories computed by pure particle method collide at blowup time

20
+
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