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aggregation equation with degenerate diffusion: 

interaction kernels:                                             degenerate diffusion: 
• granular media: K(x) = |x|3                                                    

• swarming: K(x) = -e-|x| 

• chemotaxis:

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

• ρ(x,t): ℝᵈ × ℝ → [0, +∞) nonnegative density 
• mass is conserved ⇒ ∫ ρ(x) dx = 1
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motivation

for K(x) : Rd ! R and m � 1

| {z }
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degenerate diffusion

K(x) =

(
1
2⇡ log |x| if d = 2,

Cd|x|2�d
otherwise.
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• Both models have self-attraction from ∇K ρ. 

• The role of repulsion is played by hard height constraint instead of 
degenerate diffusion. 

• Heuristically, hard height constraint is singular limit of degenerate diffusion: 

Idea:                                       , so as m→+∞,

Inspired by the aggregation equation with degenerate diffusion, we consider 
the congested aggregation equation.
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motivation

d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

�⇢m = r · (m⇢m�1

| {z }
D

r⇢) D !
(
+1 if ⇢ > 1

0 if ⇢ < 1

“ ’’



• In what sense?  

• Well-posed? Stable? 

• Dynamics?                                              

• Long time behavior?
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questions
(

d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

“ ’’
Congested aggregation eqn:
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Congested drift equation:

9

previous work

[Maury, Roudneff-Chupin, Santambrogio 2010] 
• introduced as a model of crowd motion in an evacuation scenario, 

where V(x) = distance to exit.  
• showed well-posedness as a W2 gradient flow for V(x) convex.

[Alexander, Kim, Yao 2014] showed 

and used this to characterize dynamics in terms of free boundary problem

(
d
dt⇢ = r · ((rV )⇢) if ⇢ < 1

⇢  1 always
d

dt
⇢ = r · ((rV )⇢) +�⇢m m→+∞

(
d
dt⇢ = r · ((rV )⇢) if ⇢ < 1

⇢  1 always

“ ’’



• In what sense? Wasserstein gradient flow 

• Well-posed? Stable? Yes 

• Dynamics? Hele-Shaw type free boundary problem                                             

• Long time behavior? exponential conv. to ! equilibrium |{
z}

|{
z}

10

previous work

[MRS 2010]

[AKY 2014]

Challenges: 
• K ρ not convex ⇒ W2 gradient flow theory comparatively undeveloped                                             
• K ρ nonlocal ⇒ no comparison principle

Congested drift equation:
(

d
dt⇢ = r · ((rV )⇢) if ⇢ < 1

⇢  1 always

“ ’’
V convex
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• Given two probability measures    and    on     ,                     transports              
onto    if                              . Write this as               . 

• The Wasserstein distance between μ and ν ∈ P2(ℝᵈ) is

Wasserstein metric

13

µ ⌫ Rd t : Rd ! Rd µ
⌫ ⌫(B) = µ(t�1(B)) t#µ = ⌫

effort to rearrange μ to 
look like ν, using t(x)

|{z}
t sends μ to ν
|{z}



� : [0, 1] ! P2(Rd)
Not just a metric space… a geodesic metric space: there is a constant 
speed geodesic                               connecting any μ and ν.

geodesics
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�(0) = µ, �(1) = ⌫, W2(�(t),�(s)) = |t� s|W2(µ, ⌫)
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Fig. 6.6. Evolution of f?(·, t) for several value of t and �. The first and last columns represent the data f0

and f1
. The intermediate ones present the reference solution f?(t) for successive times t = i/6, i = 1 · · · 5. Each

line illustrates f?

for di↵erent values � = j/4, j = 0 · · · 4 of the generalized cost function.

As a last example, we present in Figure 6.9 an interpolation result in the context of oceanogra-
phy in the presence of coast. We here consider Gaussian mixture data in order to simulate the Sea
Surface Temperature that can be observed from satellite. In order to model the influence of the
sea ground height, we here considered weights w varying w.r.t the distance to the coast. Denoting
as O the area representing the complementary of the sea, we define

8 k 2 Gc, wk = 1 + d(xk, @O) + ◆O 2 {1,+1},

where d(x, @O) is the Euclidean distance between a pixel location x and the boundary of O.
The estimation of such interpolations are of main interest in geophysic forecasting applications
where the variables of numerical models are calibrated using external image observations (such
as the Sea Surface Temperature). Data assimilation methods used in geophysics look for the best
compromise between a model and the observations (see for instance [12]) and making use of optimal
transportation methods in this context is an open research problem.

Conclusion. In this article, we have shown how proximal splitting schemes o↵er an elegant and
unifying framework to describe computational methods to solve the dynamical optimal transport
with an Eulerian discretization. This allowed use to extend the original method of Benamou
and Brenier in several directions, most notably the use of staggered grid discretization and the
introduction of generalized, spatially variant, cost functions.
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µ ⌫�(t)

µ ⌫(1� t)µ+ t⌫

Wasserstein geodesic

linear interpolation
[Payré, Papadakis, Oudet 2013]



Recall: in Euclidean space, E: ℝᵈ → ℝ is… 

convex 
D2E ≥ 0 

λ-convex 

D2E ≥ λ Id×d

Likewise, in the Wasserstein metric, E: P2(ℝᵈ) → ℝ is λ-convex if

convexity

E(�(t))  (1� t)E(µ) + tE(⌫)�t(1� t)
�

2
W 2

2 (µ, ⌫)

()
E((1� t)x+ ty)  (1� t)E(x) + tE(y)

E((1� t)x+ ty)  (1� t)E(x) + tE(y)�t(1� t)
�

2
|x� y|2()

Since the Wasserstein metric has geodesics, it has a notion of convexity.
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How does this relate to PDE? Wasserstein gradient flow. 
• In general, given a complete metric space (X,d), a curve x(t): ℝ → X is 

the gradient flow of an energy E: X → ℝ if 

• “x(t) evolves in the direction of steepest descent of E” 
Examples: 

metric energy functional gradient flow

gradient flow

d

dt

x(t) = �rXE(x(t))

(L2(Rd), k · kL2)

(P2(Rd),W2) E(⇢) =

Z
⇢ log ⇢

d

dt
⇢ = �⇢

d

dt
f = �fE(f) =

1

2

Z
|rf |2

E(⇢) =
1

m� 1

Z
⇢m

d

dt
⇢ = �⇢m
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Relationship between Wasserstein gradient flow and PDE: 
• If E sufficiently regular, gradient flow         PDE 
• More generally, gradient flow           PDE 

Theorem (Ambrosio, Gigli, Savaré 2005): If E is λ-convex, lower 
semicontinuous, and bounded below, solutions of its W2 gradient flow 
• exist 
• are unique 
• contract (λ>0)/expand (λ≤0) exponentially:

ρ(t): ℝ → P2(ℝᵈ) is the Wasserstein gradient flow of energy E: P2(ℝᵈ) → ℝ if

()
6()

gradient flow

17

d

dt
⇢(t) = �rW2E(⇢(t))

W2(⇢1(t), ⇢2(t))  e��tW2(⇢1(0), ⇢2(0))

For λ-convex energies, gradient flow theory is well-developed.
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d

dt
⇢(t) = �rW2E(⇢(t))

W2(⇢1(t), ⇢2(t))  e��tW2(⇢1(0), ⇢2(0))

For λ-convex energies, gradient flow theory is well-developed.

This ensured well-posedness   
of the congested drift equation 
for V(x) convex.



The congested aggregation equation is (formally) a Wasserstein gradient 
flow of the height constrained interaction energy:

gradient flow and aggregation

18

E∞ falls outside the scope of the existing theory.

Fact: If K: ℝᵈ → ℝ is λ-convex, then E∞ is λ-convex. 

Problem:                                                    is not λ-convex.K(x) =

(
1
2⇡ log |x| if d = 2

Cd|x|2�d
otherwise

E1(⇢) =

(
1
2

RR
K(x� y)⇢(x)⇢(y)dxdy if k⇢k1  1

+1 otherwise

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always



E1(�(t))  (1� t)E1(µ) + tE1(⌫)��

2

⇥
(1� t)!

�
t2W 2

2 (µ, ⌫)
�
+ t!

�
(1� t)2W 2

2 (µ, ⌫)
�⇤

Solution: Even though we don’t have 

E∞ does satisfy a similar inequality for a different modulus of convexity 

where ω(x) = x |log(x)|.

ω-convexity

19

E1(�(t))  (1� t)E1(µ) + tE1(⌫)��

2
t(1� t)W 2

2 (µ, ⌫)

Remark: The above two inequalities coincide for ω(x) = x: ω-convexity is a 
generalization of λ-convexity.

ω-convexity

λ-convexity



In fact, when ω(x) = x |log(x)|, ω-convexity is related to well-posedness of 
bounded solutions of the the Euler equations. 

• λ-convexity in W₂ is analogous to D²E being bounded from below in 
Euclidean space, or that ∇E is one-sided Lipschitz. 

• Likewise, ω-convexity in W₂ is analogous to D²E being BMO in Euclidean 
space, or that ∇E is log-Lipschitz. 

• Log-Lipschitz regularity of the velocity field was precisely what allowed 
[Yudovich 1963] to prove uniqueness of bounded solutions of the two 
dimensional Euler equations.

aside: ω-convexity & Euler equations

20



In fact, well-posedness holds for all ω(x) that satisfy Osgood’s condition.

ω-convexity: well-posedness

21

Theorem (C. 2016): If E is ω-convex for ω(x) = x |log(x)|, lower 
semicontinuous, and bounded below, solutions of its W2 gradient flow 
• exist 
• are unique 
• contract (λ>0)/expand (λ≤0) double exponentially:

For merely ω-convex energies, the gradient flow is well-posed.

W2(⇢1(t), ⇢2(t))  W2(⇢1(0), ⇢2(0))
e2�t

Corollary (C. 2016): Since E∞ is ω-convex for ω(x) = x |log(x)| and λ<0, 
the congested aggregation equation is well-posed as a Wasserstein 
gradient flow and expands at most double exponentially.



• In what sense?  

• Well-posed? Stable? 

• Dynamics?                                              

• Long time behavior?
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K= Δ-¹
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Congested aggregation eqn:
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motivation for free boundary problem
How does congested aggregation equation relate to free boundary problem?

• Consider patch solutions. For a domain Ω, suppose 
that ρ(x,t) is a solution with initial data 

• Since K= Δ-¹, ∇K ρ causes self-attraction. Thus, we 
expect ρ(x,t) to remain a characteristic function. 

• Let Ω(t)={ρ=1} be congested region, so ρ(x,t)=1Ω(t)(x).  

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

“ ’’

⇢(x, 0) =

(
1 if x 2 ⌦,

0 otherwise.

What free boundary problem describes evolution of Ω(t)?

 



• Here is a formal derivation of the related free boundary problem. 

• Suppose ρ(x,t) solves 

• Since mass is conserved, we expect ρ(x,t) satisfies a continuity equation 

where ∇p(x,t) is the pressure arising from the height constraint.

25

formal derivation

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

“ ’’

Height constraint is active on the congested region {p>0} = Ω(t). 
Height constraint is inactive outside the congested region {p=0}= Ω(t)c.

d

dt
⇢ = r · ((rK ⇤ ⇢+rp)| {z } ⇢)

v



Given                                                   what happens on congested region? 

• Because of hard height constraint, on the congested region Ω(t)={ρ=1}, 
the velocity field is incompressible, ∇⋅v=0. 

• Since K= Δ-¹,                                                , so incompressibility means 

• Using that the height constraint is active on the congested region, 
Ω(t)={p>0}, we obtain the following equation for the pressure:

26

formal derivation
d

dt
⇢ = r · ((rK ⇤ ⇢+rp)| {z } ⇢)

v

r · v = �K ⇤ ⇢+�p = ⇢+�p

��p = ⇢ on ⌦(t) = {⇢ = 1}

��p = 1 on {p > 0}



Given                                                   what about bdy of congested region? 

• By conservation of mass, 

• Using that ρ(x,t) solves the above continuity equation, this equals 

• Using that ρ(x,t)=1Ω(t)(x), for Ω(t)={p>0}, we again obtain an equation for p,
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formal derivation

outward normal velocity of ∂Ω(t)

=

Z

⌦(t)
r · ((rK ⇤ ⇢+rp)⇢) +

Z

@⌦(t)
V ⇢ =

Z

@⌦(t)
(@⌫K ⇤ ⇢+ @⌫p+ V )⇢

0 =
d

dt

Z

⌦(t)
⇢ =

Z

⌦(t)

d

dt
⇢+

Z

@⌦(t)
V ⇢

d

dt
⇢ = r · ((rK ⇤ ⇢+rp)| {z } ⇢)

v

@⌫K ⇤ 1{p>0} + @⌫p+ V = 0 on @{p > 0}



Combining the observations that… 
• on the congested region, 

• and on the boundary of the congested region, 

@⌫K ⇤ 1{p>0} + @⌫p+ V = 0 on @{p > 0}
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free boundary problem

outward normal 
velocity of ∂Ω(t)

Theorem (C., Kim, Yao 2016): 
• Suppose ρ(x,t) solves congested aggregation eqn with ρ(x,0) = 1Ω(0)(x). 
• Then ρ(x,t)=1Ω(t)(x), for Ω(t) = {p(x,t)>0}, where p a viscosity solution of

(
��p = 1 on {p > 0}

V = �@⌫K ⇤ 1{p>0} � @⌫p on @{p > 0}.

��p = 1 on {p > 0}



Using the characterization of the dynamics of patch solutions provided by 
the free boundary problem, we are able to study their long time behavior: 

• In any dimension, the Riesz Rearrangement Inequality guarantees that the 
unique minimizer of E∞ is 1B(x). 

• The difficult part is showing that mass of ρ(x,t) doesn’t escape to +∞. To 
accomplish this, we use an inequality due to Talenti, which holds in d=2.
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long time behavior

Theorem (C., Kim, Yao 2016): 
• Suppose ρ(x,t) solves congested aggregation eqn with ρ(x,0) = 1Ω(0)(x). 
• Then, in two dimensions, 

and
⇢(x, t)

Lp

��! 1B(x) for all 1  p < +1

|E1(⇢(·, t))� E1(1B)|  C⌦(0)t
�1/6



plan
• congested aggregation equation 

• previous work and challenges 

• well-posedness 
nonconvex Wasserstein gradient flow 

• dynamics/long time behavior 
free boundary problem 

• future work
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future work:
Does Keller-Segel converge to congested aggregation? 

- For V(x) convex, [Alexander, Kim, Yao 2014] showed 

- Connecting Keller-Segel and the congested aggregation eqn would… 
✦ Lead to new numerical methods for congested aggregation. 
✦ Lead to greater insight in long-time behavior of supercritical (m>2-2/d) 

Keller-Segel.
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d

dt
⇢ = r · ((rK ⇤ ⇢)⇢) +�⇢m

(
d
dt⇢ = r · (r(K ⇤ ⇢)⇢) if ⇢ < 1

⇢  1 always

(
d
dt⇢ = r · ((rV )⇢) if ⇢ < 1

⇢  1 always
d

dt
⇢ = r · ((rV )⇢) +�⇢m m→+∞

m→+∞



future work:
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What about non-patch solutions? 
- Relates to recent work on m→+∞ limit in PME-type models for tumor 

growth by [Kim and Pozar 2015] and [Mellet, Perthame, Quiros 2015] 

What about non-Newtonian kernels K(x)? 
- While well-posedness theory extends to a range of interaction kernels, 

free boundary problem strongly uses Newtonian structure.



future work:
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Other characterizations of dynamics? 

- Can we show                                                    in a weak sense? 

- For the congested drift equation [Maury, Roudneff-Chupin, 
Santambrogio 2010] showed that the analogous continuity equation 
holds, where v is obtained by projecting ∇V onto a space of admissible 
velocities. 

Further examples of ω-convex energies? 

More applications with a height constraint?

d

dt
⇢ = r · ((rK ⇤ ⇢+rp)| {z } ⇢)

v



Thank you!


