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motivation

- p(x,D): RY x R = [0, +o0) NONnegative density

- mass is conserved = | p(x) dx = 1

aggregation equation with degenerate diffusion:
%p:V-((VK*p)p)—I—Apm for /() : RY — R and m > 1
N——
self attraction degenerate diffusion

INteraction KernelS: degeneratedlfoSIon ......................
. granular media: K(x) = |x[3 AP =V (mp™ V)
- swarming: K(x) = -e "X D

1 T3 =
- chemotaxis: K (z) = ¢ 7 log [z} it d 2.’

Cylz|*~¢  otherwise.
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motivation

Inspired by the aggregation equation with degenerate diffusion, we consider
the congested aggregation equation.

“( \”
Gp =V - (VK p)p)ifp<1
p < 1 always

%p=v-((VK*p)p)+Apm | +
— S

» Both models have self-attraction from VK * .

» The role of repulsion is played by hard height constraint instead of
degenerate diffusion.

» Heuristically, hard height constraint is singular imit of degenerate diffusion:

D

+ if p>1
ldea: Ap™ =V - (mp™ ' Vp), s0as M—+co, D — { R
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Gp=V-(V(K+p)p)ifp<1
P < 1 always

Congested aggregation egn:

» |In what sense?
- Well-posed? Stable?
» Dynamics?

» Long time behavior?
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Orevious Work

))

11 (r ~
i p— . 3
Congested drift equation: |{ &=V (Vi)p)if p<1
p=1 always

bt g
[Maury, Roudneff-Chupin, Santambrogio 2010]

* |ntroduced as a model of crowd motion In an evacuation scenario,
where V(x) = distance to exit.

» showed well-posedness as a W2 gradient flow for \V/(x) convex.

[Alexander, Kim, Yao 2014] showed

(" )
( d . Lp=V-((VI)p)ifp<1
at’ V- (Ve + Ap B {,0 < 1 always

b—‘ *
and used this to characterize dynamics in terms of free boundary problem




pOrevious Work

1

Congested drift equation:

))

(4 ¥ . )
aP=V-(V)p)ifp<1
P = 1 always

~
» |In what sense? \Vasserstein gradient flow
IMRS 2010]
» Well-posed? Stable? ves
e Dynamics? Hele-Shaw type free boundary problem
[AKY 2014]
» Long time behavior? exponential conv. to I equilibrium

Challenges:
« K p not convex = W2 gradient flow theory comparatively undeveloped

« K * p nonlocal = no comparison principle

10
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Congested aggregation egn:

P < 1 always

» |In what sense”?
(nonconvex) Wasserstein gradient flow

» Well-posed? Stable”

. 057
Dynamics combination of Wasserstein gradient flow

- Long time behavior? with viscosity solution theory
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\VWasserstein metric

- Given two probability measures pand v on R% t : R — R transports p
onto v if v(B) = u(t~1(B)). Write this as t#u = v.

}J\ ~V

£\
C ) \ )

+£(®) B
- The Wasserstein distance between p and v € Po(RY is

1/2
Wo(p, v) := inf { (/ t(x) — az\2d,u(a:)) : bk = 1/}
effort to rearrange yto  tsendsptov
look like v, using t(x)
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geodesics

Not just a metric space... a geodesic melric space: there Is a constant
speed geodesic o : [0, 1] — P2(R?%) connecting any p and v.

0(0) = p, o(1) = v, Wa(o(t),0(s)) = [t — s|Wa(u,v)
Monge Kantorovich

L

inear interpolation (1 — t)u + tv
[Payre, Papadakis, Oudet 2013] 14




convexity

Since the Wasserstein metric has geodesics, it has a notion of convexity,

Recall: in Euclidean space, E: R? = R is...

convex
DE>0=E((1 -tz +ty) < (1 -t)E(x) +tE(y)

A-convex

%:S'\\r\ (rx\ Léi

A
4 =2 %

A<0
A

DPEz2 A laa<=E(1 -tz +ty) < (1 =t)E(z) +tE(y) (1 —t)=|z —y|”

2

Likewise, in the Wasserstein metric, E: P>(R%) — R is \-convex if

B(o(t)) < (1— ) B(u) + tE(w) (1 — 1

A

§W22(,LL, V)
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! NS

Wasserstein geodesic endpoints
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gradient flow

* |n general, given a complete metric space (X,d), a curve x(t): R = Xis
the gradient low of an energy E: X = R if

d
el = ~VxE(()

* “X(t) evolves in the direction of steepest descent of E”

Examples:
m energy functional gradient flow
1 d
PR ) B = [ 1947 Sr=ar
d
(P2(RY), Wa) E(p) = /plogp P =1p
1 d
E — m — — A m
(p) m — 1 /,0 dt’o P N



gradient flow

o(t): R = P2(RY) is the Wasserstein gradient flow of energy E: Po(RY) — R if
d
plt) = =V, E(p(1))

Relationship between Wasserstein gradient flow and PDE:
- If E sufficiently regular, gradient flow <——=-PDE
- More generally, gradient flow <~ PDE

For A-convex energies, gradient flow theory is well-developed.
Theorem (Ambrosio, Gigli, Savaré 2005): If E is A-convex, lower
semicontinuous, and bounded below, solutions of its W2 gradient flow
* exist

* are unigque

« contract (A>0)/expand (A<0) exponentially:

Wa(p1(t), p2(t)) < e " Wa(p1(0), p2(0))
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- are unique of the congested drift equation
for V(x) convex.
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gradient flow and aggregation

The congested aggregation equation is (formally) a Wasserstein gradient

flow of the height constrained interaction energy:

0=V - (V(K +
p < 1 always

p)p) if p <1

(1
2

_I_

\

[ K(z—y)p(z)p(y)dedy  if ||pllec < 1

otherwise

Fact: If K: RY = R is \-convex, then Ewis A-convex.

Problem: /{(z) = <

r
1 .
L fd=2 |
or 05 2] i IS Not \-convex.

E.. falls outside the scope of the existing theory.

Cy [z[?~%  otherwise
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wW-convexity

Solution: Even though we don’t have

FEoo(o(t)) < (1 —t)Es(p) + tEoo(u)—%t(l — OW5 (1, V) {-‘ A-convexity “

E.. does satisfy a similar inequality for a different modulus of convexity

Eoo(o(t)) < (1 —t)Exo(p) + tEoo(V)—é (1 — ) (PWE(,v)) +tw (1 — )2 W (u,v))]

2

~

where w(x) = X [log(x)|. I w-convexity '

Remark: The above two inequalities coincide for w(x) = X: w-convexity Is a
generalization of A-convexity.

19



aside: w-convexity & euler eqguations

In fact, when w(x) = x [log(x)|, w-convexity is related to well-posedness of
oounded solutions of the the Culer equations.

e A-convexity in Wz is analogous to D2E being bounded from below Iin
Euclidean space, or that VE is one-sided Lipschitz.

o Likewise, w-convexity in Wz is analogous to D?E being BV O in Euclidean
space, or that VE is log-Lipschitz.

e |Log-Lipschitz regularity of the velocity field was precisely what allowed
Yudovich 1963] to prove uniqueness of bounded solutions of the two
dimensional Euler equations.

20



For merely energies, the gradient flow is well-posed.

Theorem (C. 2016): If E is for w(x) = x [log(x)|, lower
semicontinuous, and bounded below, solutlons of its Wa gradient flow
» exist

* are unigue

- contract /expand double exponentially:

2.t

Wa(p1(t), p2(t)) < Wa(p1(0), p2(0))°
In fact, well-posedness holds for all w(x) that satisfy Osgood’s condition.

Corollary (C. 2016): Since E is for w(x) = x |log(x)| and A<O,
the S Well—posed as a \Wasserstein

gradient flow and expands at most double exponentially.

21
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motivation for free boundary problem

How does congested aggregation equation relate to free boundary problem?
£=0

1

o Consider patch solutions. For a domain €2, suppose
that p(x,t) is a solution with initial data
1 it x e,

0 otherwise.

e Since K= A1, VK * p causes self-attraction. Thus, we
expect p(x,t) to remain a characteristic function.

( )
Gp=V-(V(K+p)p)ifp<1
p < 1 always

N— eee—

p(x,0) = <

\

What free boundary problem describes evolution of ¢(t)?

))

o et Qt)={p=1} be congested region, so p(x,t)=1qw(X).

4

=3k

24



formal derivation

e Here is a formal derivation of the related free boundary problem.

 ( ] . A
ZP=V - (VL xp)p)if p<1

p < 1 always
h—t g
e SiNCe Mass Is conserved, we expect p(x,t) satisfies a continuity equation
( d )

2 p =V (VI xp+Vp)p)

S A

where Vp(x,t) is the pressure arising from the height constraint.

))

o SUPPOSE P(X,t) solves

Height constraint is active on the congested region {p>0} = Q(t).

Height constraint is inactive outside the congested region {p=0}= Q(t)°.

25



formal derivation

~ )
d
Given P = V- (VK *p+ Vp)p) what happens on congested region?
N——————

* Because of hard height constraint, on the congested region Q(t)={p=1},
the velocity field is incompressible, V-v=0.

e Since K= A", V-v=AK *p+ Ap = p+ Ap, SO incompressibility means

—Ap =pon (t) ={p=1j

e Using that the height constraint is active on the congested region,
Q(t)={p>0}, we obtain the following equation for the pressure:

3
l—Apzlon{p>O}
—

20



formal derivation

s R
d
Given P = V- (VK =p+ Vp)p) what about bdy of congested region?
N—————
(Y
outward normal velocity of 0€2(t)
e By conservation of mass,

d d
0= — p = / —p +/ Vp
dt Jo Q) dt 20(t)

e Using that p(x,t) solves the above continuity equation, this equals

— [ v+ ven+ [

Vp:/ (O, K*p+d,p+V)p
Q(t) o0 (t) oQ(t)

» Using that p(x,t)=1qu(X), for Q(t)={p>0}, we again obtain an equation for p,

‘QVK*l{p>O}+5’,,p+V=Oon8{p>O}l

27



free boundary problem

Combining the observations that...
e on the congested region,

~
|—Ap:1 on {p > 0}
—t OUTWard normal

» and on the boundary of the congested region,  velocity of 9C(1)

‘0 K*l{p>o}+5’yp+v—00n8{p>0}'

Theorem (C., Kim, Yao 2016):
e Suppose p(x,t) solves congested aggregation egn with p(x,0) = 1q)(X).
* Then p(x,t)=1qn(X), for Q(t) = {p(x,t)>0}, where p a viscosity solution of
( )

V=-0,Kx*1l,50y —0,p ond{p>0}.
—— i

28



Using the characterization of the dynamics of patch solutions provided by
the free boundary problem, we are able to study their long time lbehavior:

Theorem (C., Kim, Yao 2016):

* Suppose P(x,t) solves with p(x,0) = 1q)(X).
* Then, In ,
p(x,t) Lo 1pg(x) for all 1 < p < +o0
and
Eao(p(11)) — Eso(18)| < Cooyt™"/°
* In , the Riesz Rearrangement Inequality guarantees that the

unigue minimizer of E«is 1s(x).

e The difficult part is showing that mass of p(x,t) doesn’t escape to +eo. TO

accomplish this, we use an inequality due to Talenti, which holds In
29
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Does Keller-Segel converge to congested aggregation”

d

at’

- (d : A
=V - (V(A * tp<l1
2y=9 -7k - o + o) G 0T . T s
P = y

- For V(x) convex, [Alexander, Kim, Yao 2014] showed

( )
d .
ZP=V-((V)p)if p<1
v Wi]» {pé L alvays

b—‘ g

- Connecting Keller-Segel and the congested aggregation egn would...

+
+

_ead to new numerical methods for congested aggregation.
_ead to greater insight in long-time behavior of supercritical (m>2-2/d)

Keller-Segel.

31



What about non-patch solutions”

- Relates to recent work on m—+e limit in PME-type models for tumor
growth by [Kim and Pozar 2015] and [Mellet, Perthame, Quiros 2015]

What about non-Newtonian kernels K(x)"?

- While well-posedness theory extends to a range of interaction kernels,
free boundary problem strongly uses Newtonian structure.

32



Other characterizations of dynamics?

- Can we show

IN a weak sense”?

- For the congested drift equation [Maury, Roudneff-Chupin,
Santambrogio 2010] showed that the analogous continuity equation
holds, where v is obtained by projecting V'V onto a space of admissible

velocities.

Further examples of w-convex energies?

More applications with a height constraint”

33



Thank you!



