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• Given two probability measures    and    on     ,                     transports              
onto    if                              . Write this as               . 

• The Wasserstein distance between μ and ν ∈ P2,ac(ℝᵈ) is

Wasserstein metric
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µ ⌫ Rd t : Rd ! Rd µ
⌫ ⌫(B) = µ(t�1(B)) t#µ = ⌫

effort to rearrange μ to 
look like ν, using t(x)

|{z}
t sends μ to ν
|{z}



� : [0, 1] ! P2(Rd)
Not just a metric space… a geodesic metric space: there is a constant 
speed geodesic                               connecting any μ and ν.

geodesics
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�(0) = µ, �(1) = ⌫, W2(�(t),�(s)) = |t� s|W2(µ, ⌫)
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Fig. 6.6. Evolution of f?(·, t) for several value of t and �. The first and last columns represent the data f0

and f1
. The intermediate ones present the reference solution f?(t) for successive times t = i/6, i = 1 · · · 5. Each

line illustrates f?

for di↵erent values � = j/4, j = 0 · · · 4 of the generalized cost function.

As a last example, we present in Figure 6.9 an interpolation result in the context of oceanogra-
phy in the presence of coast. We here consider Gaussian mixture data in order to simulate the Sea
Surface Temperature that can be observed from satellite. In order to model the influence of the
sea ground height, we here considered weights w varying w.r.t the distance to the coast. Denoting
as O the area representing the complementary of the sea, we define

8 k 2 Gc, wk = 1 + d(xk, @O) + ◆O 2 {1,+1},

where d(x, @O) is the Euclidean distance between a pixel location x and the boundary of O.
The estimation of such interpolations are of main interest in geophysic forecasting applications
where the variables of numerical models are calibrated using external image observations (such
as the Sea Surface Temperature). Data assimilation methods used in geophysics look for the best
compromise between a model and the observations (see for instance [12]) and making use of optimal
transportation methods in this context is an open research problem.

Conclusion. In this article, we have shown how proximal splitting schemes o↵er an elegant and
unifying framework to describe computational methods to solve the dynamical optimal transport
with an Eulerian discretization. This allowed use to extend the original method of Benamou
and Brenier in several directions, most notably the use of staggered grid discretization and the
introduction of generalized, spatially variant, cost functions.
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µ ⌫�(t)

µ ⌫(1� t)µ+ t⌫

Wasserstein geodesic

L2 geodesic
[Peyré, Papadakis, Oudet 2013]



Likewise, in the Wasserstein metric, E: P2(ℝᵈ) → ℝ is λ-convex if 

For any ν ∈ P2(ℝᵈ),                             is 2-concave         W2 is PC.=)E(µ) = W 2
2 (µ, ⌫)

Recall: E: L2(ℝᵈ) → ℝ is    convex if 

convexity
Since the Wasserstein metric has geodesics, it has a notion of convexity.

5

λ-convex

L2 geodesic endpoints
| {z }

E(�(t))  (1� t)E(µ) + tE(⌫)�t(1� t)
�

2
W 2

2 (µ, ⌫)

W2 geodesic endpoints

E((1� t)f + tg)  (1� t)E(f) + tE(g)�t(1� t)
�

2
kf � gk2

For any g ∈ L2(ℝᵈ),                             is 2-convex         L2 is NPC.=)E(f) = kf � gk22



gradient flow

• Given E: P2(ℝᵈ) → ℝ, its local slope is: 

• Given ρ:[0,T] → P2(ℝᵈ), its metric derivative is: 
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|@E|(µ) := lim sup
⌫!µ

(E(µ)� E(⌫))+

W2(µ, ⌫)

|⇢0|(t) = lim
s!t

W2(⇢(s), ⇢(t))

|s� t|

DEF: ρ(t):ℝ→P2(ℝᵈ) is the Wasserstein gradient flow of E:P2(ℝᵈ)→ℝ if
d

dt
E(⇢(t))  �1

2
|@E(⇢(t))|� 1

2
|⇢0| (t)

We want to define the gradient flow as                                      ,               
but without a Riemannian structure, we don’t have a notion of gradient.

d

dt
⇢(t) = �rW2E(⇢(t))



Abbreviating        by     ,

Wasserstein gradient flow
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|
{z
}

()

d

dt
E(f(t))  �1

2
|rE(f(t))|� 1

2

����
d

dt
f(t)

����

d

dt
E(f(t)) = � |rE(f(t))|

����
d

dt
f(t)

����

����
d

dt
f(t)

���� = |rE(f(t))|
d

dt
f(t) = �rE(f(t))

rL2 r

()

DEF: ρ(t):ℝ→P2(ℝᵈ) is the Wasserstein gradient flow of E:P2(ℝᵈ)→ℝ if
d

dt
E(⇢(t))  �1

2
|@E(⇢(t))|� 1

2
|⇢0| (t)

Analogy with L2 gradient flow:



Good news: gradient flows structure is very useful in PDE 

Bad news: Wasserstein metric has more complicated geometry

• existence 
• uniqueness 
• approximation 
• stability

• existence 
• uniqueness 
• approximation 
• stability

gradient flow and PDE
d

dt

x(t) = �rXE(x(t))

8

L2 Wasserstein metric

Riemannian manifold metric space
non-positively curved positively curved

contraction inequality

|{z}
time discretization|{z

}



gradient flow                                        time discretization

Define                                                .  

Then     solves

fn � fn�1

⌧
= �rE(fn), f0 = g

�(h) =
1

2⌧
kh� fn�1k22 + E(h)

time discretization: L2
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d

dt
f(t) = �rE(f(t)), f(0) = g

convex
r�(fn) = 0fn

�

Assume: E is λ-convex . Since L2(ℝᵈ) is NPC,     is           -convex.�
1

⌧
+ �λ-convex NPC

() fn is the unique minimizer of �

kfn � f̃nk2  1

1 + �⌧
kfn�1 � f̃n�1k2Prop:

kf(t)� f̃(t)k2  e��tkf(0)� f̃(0)k2⌧ =
t

n
kf(t)� fnk2  Cp

n
Thm: For           ,                                ,                                                         

Analogous results hold in any NPC metric space [Mayer, ’98], [CL ’71] 

What about when the metric space isn’t NPC?

contraction inequalitytime discretization



gradient flow                                        time discretization (JKO)
⇢n = argmin

⌫

⇢
1

2⌧
W 2

2 (⌫, ⇢n�1) + E(⌫)

�

time discretization: W2
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d

dt
E(⇢(t))  �1

2
|@E(⇢(t))|� 1

2
|⇢0|(t)

⇢(0) = µ ⇢0 = µ

Assume: E is bounded below and λ-convex along generalized geodesics. 
Then                                                  is           -convex along gen geodesics.

1

⌧
+ ��(⌫) =

1

2⌧
W 2

2 (⌫, ⇢n�1) + E(⌫)

W2(⇢(t), ⇢n) 
Cp
n

Thm: For           ,                                ,                                                         ⌧ =
t

n
W2(⇢(t), ⇢̃(t))  e��tW2(⇢(0), ⇢̃(0))

[AGS ’05]

Prop:                                                        W2(⇢n, ⇢̃n) 
1

1 + �⌧
W2(⇢n�1, ⇢̃n�1) +O(⌧2)

[C. ’16]

Overcome W2 geometry issues… what about when E isn’t  λ-convex?

contraction inequalitytime discretization



 Def: Given a modulus of convexity ω(x) and λ∈ℝ, E is ω-convex if 

ω-convexity
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E(�(t))  (1� t)E(µ) + tE(⌫)�t(1� t)
�

2
W 2

2 (µ, ⌫)

Recall: 

E: P2(ℝᵈ) → ℝ is λ-convex if

E((�(t))  (1� t)E(µ) + tE(⌫)��

2

⇥
(1� t)!(t2W 2

2 (µ, ⌫)) + t!((1� t)2W 2
2 (µ, ⌫))

⇤

Examples: 
•              , reduces to λ-convexity 
•                          , [Ambrosio Serfaty, 2008] [Carrillo Lisini Mainini, 2014] 
•                          , [Carrillo McCann Villani, 2006]

!(x) = x

!(x) = x| log(x)|

!(x) = x

p
, p > 1



gradient flow                                        time discretization (JKO)
⇢n = argmin

⌫

⇢
1

2⌧
W 2

2 (⌫, ⇢n�1) + E(⌫)

�

time discretization: W2
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d

dt
E(⇢(t))  �1

2
|@E(⇢(t))|� 1

2
|⇢0|(t)

⇢(0) = µ ⇢0 = µ

Assume: E is bounded below and ω-convex along generalized geodesics 
for ω(x) satisfying Osgood’s condition: 

contraction inequality

time discretization

Z 1

0

dx

!(x)
= +1

Thm: For           ,                            ,                                                         ⌧ =
t

n[C. ’17]
d

dt

Ft(x) = � !(Ft(x))

F2t(W
2
2 (⇢1(t), ⇢2(t)))  W 2

2 (⇢1(0), ⇢2(0))W2(⇢(t), ⇢n) ! 0

In particular, for ω(x) = x|log(x)| and                              ,
W2(⇢(t), ⇢̃(t))  W2(⇢(0), ⇢̃(0))

e2�t

W2(⇢(0), ⇢̃(0))  1



Questions



Thank you!


