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gradient flow and PDE
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\VWasserstein metric

- Given two probability measures pand v on R% t : R — R transports p
onto v if v(B) = u(t~1(B)). Write this as t#u = v.
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- The Wasserstein distance between p and v € Poac(RY is

1/2
Wo(p, v) := inf { (/ t(x) — az\2d,u(a:)) : bk = 1/}
effort to rearrange yto  tsendsptov
look like v, using t(x)




geodesics

Not just a metric space... a geodesic melric space: there Is a constant
speed geodesic o : [0, 1] — P2(R?%) connecting any p and v.

0(0) = p, o(1) = v, Wa(o(t),0(s)) = [t — s|Wa(u,v)
Monge Kantorovich

L

L2 geodesic (1 —t)u + tv

[Peyré, Papadakis, Oudet 2013] 4



convexity

Since the Wasserstein metric has geodesics, it has a notion of convexity,
‘Recall: E: L2RY = R is A-convex if

E((1—-t)f+tg) <(1-t)E(f)+tE(9)
N———— ‘\
2 geodesic endpoints
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Forany g € L2RY), E(f) = ||f — gll5 is 2-convex == .2 is NPC.

Likewise, in the Wasserstein metric, E: P2(RY) = R is A-convex if

; B(o(t)) < (1~ )E(u) + tEw) (1 — 1)1 (1.
z b N S
| W2 geodesic endpoints

For any v e Po(RY), E(u) = W5 (u,v) is 2-concave = W is PC.




gradient flow

d
We want to define the gradient flow as — p(t) = —Vw,E(p(t)),

but without a Riemannian structure, we don’t have a notion of gradient.

. Given E: Po(RY = R, its local slope is:

51 =y (2~ EC)

e Given p:[0,T] = P2(RY), its metric derivative is:
WQ(IO(S)7 p(t))
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DEF: p(t):R—P2(RY is the Wasserstein gradient flow of E:P2(RY) R if

%E(p(t)) < —% OE(p(t))| — % '] ()




Wasserstein gradient flow

DEF: p(t):R—P2(RY is the Wasserstein gradient flow of E:P2(RY) R if

CB(p(t) < —5 0B (p(1)] — 5 |0'] (1

Analogy with L2 gradient flow:

Abbreviating V2 by V,

d %f(t) = |VE(f(t)) E
/W ="VE(GW®) = d ;
\ S E(f(@) == IVE(fQ@))| 2 /) '
> = GEUO) < 5 IVEU®) ~ 5 [ 510 |



gradient flow and PDE
Gl = ~VxE(a(t)

Good news: gradient flows structure is very useful in PDE

® cxistence

® UNIQUENESS time discretization
® approximation contraction inequality
e stability

Bad news: \Wasserstein metric has more complicated geometry

L2 Wasserstein metric

Riemannian manifold metric space

non-positively curved positively curved




time discretization: L?

Analogous results hold in any NPC metric space [Mayer, '98], [CL "71]

What about when the metric space isn’t NPC?

I

Assume: E is|\-convex|. Since L2(R% isNPC|, ® is ! + A -convex.
T
Prop:|| fr — H2 > 1+)\ | fn—1 —fn 1|2
C N
Thm: For 7 = 5, 1f(t) = fallz < N £t = F®)ll2 < e ][ £(0) = F(0)]2

time discretization contraction inequality 9




time discretization: Wo

‘gradient flow tlme discretization (JKO)

T 1 TP

B < —SOE()] ~ 5110) ., = argmin{ 3 W2 pua) + EW) |
p(0) = p o= p

Assume: E is bounded below and A-convex along generalized geodesics.
1 1
Then®(v) = EWQQ(V, pn—1) + E(v) is — + A-convex along gen geodesics.

-
t ¢ at -
Thm: For 7 = —, Wa(p(t), pn) < —=, Walp(t),p(t)) < e” W2 (p(0), p(0))
AGS '05] n /n
time discretization contraction inequality
1

Prop: Ws(pn, Wa(pn-1,pn-1) + O(1

1%] 2(p ,0)_1+)\ 2(Prn—1, Pn—1) (7%)

Overcome W2 geometry issues... what about when E isn’t A-convex?
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wW-convexity

Recall:

E: Po(RY — R is A-convex if

B(o(t)) < (1~ )E(u) + tEw) (1 — 1)1 (1.

- Def: Given a modulus of convexity w(x) and AeR, E is w-convex if

B((0(t)) < (1= 0B () + tBw) ) (1 0wl W () el (1 0710 )

'\M
Examples:

« w(x) =z, reduces to A-convexity

e w(x) = x|log(x)|, [Ambrosio Serfaty, 2008] [Carrillo Lisini Mainini, 2014]

e w(x) = 2P, p> 1, [Carrilo McCann Villani, 2006]
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time discretization: Wo

‘gradient flow tlme discretization (JKO)
- d 1 1

B < 5B = 5110, = agmin{ S WE 0o + E) |

|74

p(0) = p po =4

Assume: E is bounded below and w-convex along generalized geodesics

1
for w(x) satisfying Osgood’s condition: / dr
0

w(x) - oS

t
Thm: For 7= 1. Wa(p(0). ) = 0, Far(W3 (1 (0):p2(1)) < WE (61(0),p2(0)
. - | 7ot d
time discretization EFt(w) =\ w(Fy(x))

contraction inequality
In particular, for w(x) = x|log(x)] and Wa(p(0), p(0)) <1,

W2<p< ), () < Wa(p(0), p(0)¢
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Questions



Thank you!



