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Quasicrystals and TDA

Credit:https://courses.lumenlearning.com/introchem/chapter/allotropes-of-carbon/

Figure: Eight Allotropes of Carbon
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Quasicrystals and TDA

Credit:https://matmatch.com/resources/blog/quasicrystals-materials-that-should-not-exist/

Figure: Three different kinds of material
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Quasicrystals and TDA

Figure: Point Clouds and Topological Data Analysis
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Basic Notions and Examples

Tilings of Rd

Definition
A tiling of Rd is a subdivision into pieces called "tiles".

A simple tiling is one in which
1 There is a finite collection {pi}ni=1 of prototiles such that every tile is

a translated copy of some pi .
2 Each tile is a polytope
3 If two tiles meet, they meet completely in one of their (d − 1)-faces.

Notation
If U ⊂ Rd , the patch of U is the set of tiles t which meet U, denoted [U].
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Basic Notions and Examples

Simple Tilings

Figure: Periodic Tilings
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Basic Notions and Examples

Simple Tilings

Figure: A Patch of the Penrose Tiling
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Basic Notions and Examples

Violating Hypotheses

Figure: A Pinwheel Tiling. Lacks finitely many prototiles up to translation.
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Basic Notions and Examples

Violating Hypotheses

Figure: Penrose Chickens. Tiles are not polytopes.
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Basic Notions and Examples

Violating Hypotheses

Figure: A chair tiling. Edges don’t meet full-face to full-face
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Basic Notions and Examples

Equivalence of Tilings

Figure: The Arrow Tiling is MLD to the chair tiling
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The Hull as an Orbit

Definition (Tiling Metric)

Given two tilings, T and T ′, of Rd , they are ε-close (ε > 0) if up to a
translation of distance ε, they agree on a ball of radius ε−1 around the
origin.

Note
Compare this definition to that of the Gromov-Hausdorff distance between
two based metric spaces M and M ′.
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The Hull as an Orbit
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The Hull as an Orbit

Definition
The orbit of a tiling T is the set

O(T ) :=
{
T − x | x ∈ Rd

}

Definition (The Hull: Version 1)
The hull ΩT of a tiling T is the closure of O(T ) in the tiling metric.

Note
The hull ΩT is closed under translation by Rd , and complete in the tiling
metric, and is therefore called a tiling space.
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The Hull as an Orbit
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The Hull as an Orbit

Theorem
If T is a simple tiling, ΩT is a compact metric space.

Proof.

Take a sequence {Ti} ⊂ ΩT . For each r > 0, there are only finitely many
patches around balls of radius r up to translation. So there is a
subsequence which converges on Br (0). If R > r , and a sequence
converges on BR , it converges on Br . Use Cantor’s diagonalization to
obtain a sequence that converges on every bounded set B1,B2, . . . ,Bn, . . . .
The resulting sequence converges on every bounded set and so is Cauchy
(i.e. convergent).

Note
There are a few other tiling spaces of interest, namely allowing the
Euclidean rotations of T . In general these give new tiling spaces.
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The Hull as an Inverse Limit

Definition (The Hull: Version 2)

For each n ∈ N, let Γn be the possible instructions for laying n layers of
tiles around some tile at the origin (called the n-th Gähler approximant).
Let fn : Γn+1 → Γn be the forgetful map. The hull of T is the inverse limit

ΩT := lim←− Γn

Note
This gives some more intuition about the hull: if T ′ ∈ ΩT , then every
patch of T ′ is found somewhere in a translate of T , and gives the same
space as in orbit-closure definition, but with some more clear structure.
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The Hull as an Inverse Limit

Theorem
If T is a simple tiling, ΩT a compact metric space.

Proof.

Each Γn is a compact branched manifold, the inverse limit of which is a
compact metric space.

Note
We’ll see some other advantages to this perspective later on when we study
the cohomology of ΩT .

Question: How does the action of Rd on T interact with the hull ΩT ?
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Basic Ideas

Definition (Foliated Space)

A foliated space X of dimension p is a separable, metrizable space X
together with a maximal collection of charts {ϕα : Uα → Lα × Nα} with
Lα ⊂ Rp open, where

1 if ϕα = (t, n) then change of coordinates is given by t ′ = ϕ(t, n) and
n′ = ψ(n) for some local homeomorphism ψ

2 for each n, the transition map ϕβ ◦ ϕ−1
α (−, n) : Lα → Lβ is smooth.

Note
A level surface is a piece Lα × {n} ⊂ Lα × Nα. These level surfaces
coalesce to create connected components called "leaves". The final
condition above tells us that transition functions are smooth on leaves
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Basic Ideas

Figure: Transition Maps of a Foliated Manifold
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Basic Ideas

Figure: The Kronecker Foliation of the Torus
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Basic Ideas

Example (Submersions and Fiber Bundles)

A submersion f : Mp+q → Nq induces p-dimensional foliation with leaves
the connected components of f −1(n).

If Ep+q is a fiber bundle

F p Ep+q

Bq

then E is foliated by F if F is connected.
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The Hull as a Foliated Space

Foliation of the Hull

Definition
Let P be a tiling of Rd , and let P ′ ∈ ΩT . An ε-transveral of P ′ is

TP′,ε :=
{
P ′′ ∈ ΩT | B(0, ε−1) ∩ P ′′ = B(0, ε−1) ∩ P ′}

Example
If T is the half-and-half tiling, and T ′ is an all-blue tiling, then the
ε-transversal of T ′ is the collection of tilings which all have only blue tiles
up to radius ε−1 around the basepoint, and whose basepoints align with
those of T ′.
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The Hull as a Foliated Space

Note
Because our tilings have finite local complexity, the action of Rd is locally
free. So for any T ′′ ∈ TT ′,ε, the action of Rd takes us outside the
transversal. That is, TT ′,ε is transverse to the action of Rd .

Theorem
The hull of a simple tiling is a foliated space.

Proof.
The topology of ΩT is generated by open sets of the form B(0, ε)× TT ′,ε.
This happens in such a way that transition functions are "nice", giving ΩT

a foliated structure.
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Three Cohomology Theories

Three Cohomologies of ΩT

1 Čech Cohomology
2 Pattern-Equivariant Cohomology
3 Foliated Cohomology
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Three Cohomology Theories

Čech Cohomology of ΩT

Čech Cohomology
If U is an open cover of X , and N(U) is the nerve of U , then
Ȟ∗(U) = H∗(N(U)), and Ȟ∗(X ) := lim−→ Ȟ∗(U).

Theorem

Ȟ∗(ΩT ) = Ȟ∗(lim←− Γn) = lim−→ Ȟ∗(Γn)

Proof.
The first equality is by definition of ΩT . The second follows because each
Γn is a branched manifold, and so the covers from Čech cohomology are
"nice enough" for the limits to commute as they do.
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Ȟ∗(U) = H∗(N(U)), and Ȟ∗(X ) := lim−→ Ȟ∗(U).
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Three Cohomology Theories

PE Cohomology

Definition (Strongly Pattern Equivariant)

A smooth function f : T → R is PE with radius R > 0 if whenever
[B(x ,R)] = [B(y ,R)], then f (x) = f (y). A function is strongly PE if it is
PE for some R > 0.

Definition (Weakly Pattern Equivariant)
A function T → R which is a uniform limit of strongly-PE functions is a
weakly-PE function.

Note
If we instead consider functions T → Z we get an analogous theory for
Z-coefficients, though w-PE and s-PE are identical.
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Three Cohomology Theories

Definition
A strongly (weakly) PE k-form is a differential form on T

ω =
∑
|I|=k

fIdx
I

where each fI is strongly (weakly) PE.

The collection of such forms is
denoted C k

s−PE (T ) (resp. C k
w−PE (T )).

Theorem
Let d be the exterior derivative. Then

C •
s−PE (T ) : · · · → C k

s−PE (T )
d−→ C k+1

s−PE (T )→ · · ·

is a chain complex (resp. C •
w−PE (T )), with cohomology H∗

s−PE (T ) (resp.
H∗
w−PE (T )).
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Three Cohomology Theories

Foliated Cohomology
Definition
Let M be a foliated space. Let

C∞
tlc (M) =

{
f : M → R

∣∣∣∣∣ f is continuous, leafwise-smooth, and
locally constant in the transverse direction

}

Let C∞
τ (M) = closure(C∞

tlc (M)). Let C k
tlc/τ (M) be the tlc/τ k-forms.

Theorem

C •
tlc(M) : · · · → C k

tlc(M)
d−→ C k+1

tlc (M)→ · · ·

is a chain complex (resp. C •
τ (M)), with cohomology H∗

tlc(M) (resp.
H∗
τ (M)). The maximal Hausdorff quotient of H∗

τ (M) is denoted H
∗
τ (M).
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Relating the Cohomologies

Comparing Cohomologies

Theorem (Kellendonk-Putnam, 2005)

If T is a simple tiling, then H∗
s−PE (T ) = Ȟ∗(ΩT )

Lemma
If M is a branched manifold, Ȟ∗(M) = H∗

deRham(M).

Note
Kellendonk and Putnam’s original proof does not use this fact. Instead,
they apply a more general theory of foliations and dynamical systems to
prove their result.
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Relating the Cohomologies

Lemma
Let πn : Rd → Γn be the natural projection ΩT → Γn restricted to O(T ).

There is a correspondence
{strongly PE functions on T} ←→

⋃
n∈N
{smooth functions f : Γn → R} .

Proof.
Let Rn > rn > 0 be such that for any T ′ ∈ ΩT , the ball B(0, rn) is
contained in n layers of tiles around the origin, and B(0,Rn) contains n
layers of tiles around the origin. (Such radii exist because T is simple.)

Suppose f : Γn → R is smooth. If [B(x ,Rn)] = [B(y ,Rn)] then
πn(x) = πn(y), so f ◦ πn is strongly PE with radius Rn.

Let g : Rd → R be strongly PE with radius R < rn. Then f : Γn → R
defined by f (πn(x)) := g(x) is well-defined on all of Γn and smooth.
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layers of tiles around the origin. (Such radii exist because T is simple.)

Suppose f : Γn → R is smooth. If [B(x ,Rn)] = [B(y ,Rn)] then
πn(x) = πn(y), so f ◦ πn is strongly PE with radius Rn.

Let g : Rd → R be strongly PE with radius R < rn. Then f : Γn → R
defined by f (πn(x)) := g(x) is well-defined on all of Γn and smooth.
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Relating the Cohomologies

Proof of Kellendonk-Putnam.

H∗
s−PE (T ) =

Closed PE forms on T

Exact PE forms on T

=
lim−→Closed forms on Γn

lim−→Exact forms on Γn

= lim−→H∗
deRham(Γn)

= lim−→ Ȟ∗(Γn,R)
= Ȟ∗(lim←− Γn,R)
= Ȟ∗(ΩT ,R)
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= Ȟ∗(lim←− Γn,R)
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= Ȟ∗(ΩT ,R)

Kyle Hansen (UCSB) Tiling Spaces April 6, 2022 31 / 42



Motivation Tilings of Rd The Hull of a Tiling Foliated Spaces Topology of The Hull

Relating the Cohomologies

Proof of Kellendonk-Putnam.

H∗
s−PE (T ) =

Closed PE forms on T

Exact PE forms on T

=
lim−→Closed forms on Γn

lim−→Exact forms on Γn

= lim−→H∗
deRham(Γn)

= lim−→ Ȟ∗(Γn,R)
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Relating the Cohomologies

Theorem
H∗
s−PE (T ) = H∗

tlc(ΩT ) and H∗
w−PE (T ) = H∗

τ (ΩT )

Proof.

This is essentially a consequence of the lemma earlier that

{strongly PE functions on T} ←→
⋃
n∈N
{smooth functions f : Γn → R} .

See [KP06] for details.
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Relating the Cohomologies

Summary of Relationships

Ȟ∗(ΩT ,R) H∗
s−PE (T ) H∗

tlc(ΩT )

H∗
w−PE (T ) H∗

τ (ΩT )

H
∗
τ (ΩT )
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Example of PE-Cohomology

What’s the Big Deal?
Pattern-Equivariant cohomology helps us recognize the generators of
cohomology.

Recall
The “chair tiling” is the same as the “arrow tiling”. We can describe the
cohomology of the chair tiling using the arrow tiling.
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Example of PE-Cohomology

Representatives of the Arrow Tiling Cohomology

Proposition

If T is the arrow tiling, then the Čech cohomology groups of ΩT with
integer coefficients is given by

Ȟ0(ΩT ) = Z

Ȟ1(ΩT ) = Z [1/2]2

Ȟ2(ΩT ) =
1
3
Z [1/4]⊕ Z [1/2]2
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Example of PE-Cohomology

1 ∈ Ȟ0(ΩT )
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Example of PE-Cohomology

(a, b) ∈ Ȟ1(ΩT )
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Example of PE-Cohomology

( a

2n
, 0
)
∈ Ȟ1(ΩT )

a cocycle in Γn
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Example of PE-Cohomology

(
0,

b

2m

)
∈ Ȟ1(ΩT )

a cocycle in Γm
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Example of PE-Cohomology

(
1
4n
, 0, 0

)
∈ Ȟ2(ΩT )
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1
4n
, 0, 0

)
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Example of PE-Cohomology

(
0, 0,

1
2n

)
∈ Ȟ2(ΩT )
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Current and Future Directions References

Crete-ising The Discete

Definition
From Wikipedia: "The Hausdorff distance [between two metric subspaces
X ,Y of an ambient space M] is the longest distance you can be forced to
travel by an adversary who chooses a point in one of the two sets, from
where you then must travel to the other set."

dH(X ,Y ) = max

{
sup
x∈X

d(x ,Y ), sup
y∈Y

d(X , y)

}
,
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Current and Future Directions References

Definition
The Gromov-Hausdorff distance between two metric spaces is the infimum

dGH(X ,Y ) := inf
f ,g

dH(f (X ), g(Y ))

over isometric embeddings f , g : X ,Y ↪→ M into some ambient space M.
In other words, it is the smallest possible separation between X and Y on
any metric on their union.

The Idea
Rather than comparing tilings of Rd using the tiling metric, we can compare
Rd with a given metric, using the Gromov-Hausdorff Distance. Pointed or
Based GH space (GHB) tries to keep basepoints close together as well.
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Definition
Let M be a manifold of bounded geometry (i.e., inj(M) > c > 0 and
|K | < C ), and let GHB(D) be Pointed Gromov-Hausdorff space of balls of
radius D/2. Define ΨD : M → BGH by ΨD(m) = B(m, D2 ).

Theorem
The image ΨD(M) ⊆ GBH(D) is precompact.

Proof.
Any uniformly totally bounded class of compact metric spaces is
pre-compact in GH space. See [BBI01, 264f.] for more details.
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Definition
The hull of a Manifold with Bounded Geometry is a subspace of GH space

Λ(M) := lim←−Closure(ΨD(M))

Definition
The complex of differential forms which are continuous under GH
correspondence creates a cohomology H∗

bg (M). Compare this to the
foliated and weakly-PE cohomologies.

Where’d All the Tilings Go?

Tiling Voronoi Diagram Geometry Mfld with BG
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