An Introduction to Tiling Spaces

Kyle Hansen

University of California, Santa Barbara Department of Mathematics

April 6, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回= のへで

Outline

1 Motivation

Quasicrystals and TDA

2 Tilings of \mathbb{R}^d

Basic Notions and Examples

3 The Hull of a Tiling

The Hull as an Orbit The Hull as an Inverse Limit

④ Foliated Spaces

Basic Ideas The Hull as a Foliated Space

Topology of The Hull

Three Cohomology Theories Relating the Cohomologies Example of PE-Cohomology

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆○

Motivatio	'n
000	

Foliated Spaces

Topology of The Hull

Quasicrystals and TDA

Credit: https://courses.lumenlearning.com/introchem/chapter/allotropes-of-carbon/

Figure: Eight Allotropes of Carbon

Credit: https://matmatch.com/resources/blog/quasicrystals-materials-that-should-not-exist/

Figure: Three different kinds of material

Image: A matrix

三日 のへで

Motivation	۱
000	

The Hull of a Tiling

Foliated Spaces

Topology of The Hull 00000 00000 000

Quasicrystals and TDA

Figure: Point Clouds and Topological Data Analysis

• • • • • • • • •

三日 のへで

Tilings of ℝ ^d ●000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
d Examples			
f ℝ ^d			
	Tilings of R ^d •000	Tilings of R ^d •000 The Hull of a Tiling 0000 d Examples f R ^d	Tilings of \mathbb{R}^d The Hull of a Tiling 00000 Foliated Spaces 0000 d Examplesf \mathbb{R}^d

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

= 990

6/42

Motivation 000	Tilings of ℝ ^d ●000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull 00000 00000 000
Basic Notions and	d Examples			
Tilings o	f \mathbb{R}^d			

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles". A *simple tiling* is one in which

-

Motivation 000	Tilings of ℝ ^d ●000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
Basic Notions a	nd Examples			

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

- A simple tiling is one in which
 - There is a finite collection $\{p_i\}_{i=1}^n$ of *prototiles* such that every tile is a translated copy of some p_i .

Motivation 000	Tilings of ℝ ^d ●000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
Basic Notions and	Examples			

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

- A simple tiling is one in which
 - There is a finite collection $\{p_i\}_{i=1}^n$ of *prototiles* such that every tile is a translated copy of some p_i .
 - 2 Each tile is a polytope

Motivation 000	Tilings of ℝ ^d ●000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
Basic Notions and	Examples			

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

- A simple tiling is one in which
 - There is a finite collection $\{p_i\}_{i=1}^n$ of *prototiles* such that every tile is a translated copy of some p_i .
 - 2 Each tile is a polytope
 - 3 If two tiles meet, they meet completely in one of their (d-1)-faces.

Motivation 000	Tilings of ℝ ^d ●000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
Basic Notions a	nd Examples			

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

- A simple tiling is one in which
 - There is a finite collection $\{p_i\}_{i=1}^n$ of *prototiles* such that every tile is a translated copy of some p_i .
 - 2 Each tile is a polytope
 - 3 If two tiles meet, they meet completely in one of their (d-1)-faces.

Notation

If $U \subset \mathbb{R}^d$, the *patch of U* is the set of tiles *t* which meet *U*, denoted [*U*].

Motivation 000	Tilings of ℝ ^d 0●00	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
Basic Notions and	l Examples			

Simple Tilings

Figure: Periodic Tilings

∃ ⊳

三日 のへで

Motivation 000	Tilings of ℝ ^d 0●00	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
Basic Notions a	nd Examples			
o				

Simple Tilings

Kyle Hansen (UCSB)

< 글 ▶ 글 글 ♪ 오 ♡

Motivation 000	Tilings of ℝ ^d 00●0	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 0000
Basic Notions an	d Examples			

Violating Hypotheses

Figure: A Pinwheel Tiling. Lacks finitely many prototiles up to translation.

Kyle Hansen (UCSB)

1

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
Basic Notions and	Examples			

Violating Hypotheses

Figure: Penrose Chickens. Tiles are not polytopes.

Kyle Hansen (UCSB)

< ∃ > ∃ = • • • • •

Motivation 000	Tilings of ℝ ^d 00●0	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
Basic Notions and	Examples			

Violating Hypotheses

Figure: A chair tiling. Edges don't meet full-face to full-face

三日 のへで

Motivation 000	Tilings of \mathbb{R}^d 000 $ullet$	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 0000
Basic Notions a	nd Examples			

Equivalence of Tilings

Arrow

MLD to chair

, etc.

Figure: The Arrow Tiling is MLD to the chair tiling

э

1= 9QC

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ●0000 ○00	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 0000
The Hull as an C)rbit			

Definition (Tiling Metric)

Given two tilings, T and T', of \mathbb{R}^d , they are ε -close ($\varepsilon > 0$) if up to a translation of distance ε , they agree on a ball of radius ε^{-1} around the origin.

EL OQO

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ●0000 ○00	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 0000
The Hull as an (Orbit			

Definition (Tiling Metric)

Given two tilings, T and T', of \mathbb{R}^d , they are ε -close ($\varepsilon > 0$) if up to a translation of distance ε , they agree on a ball of radius ε^{-1} around the origin.

Note

Compare this definition to that of the *Gromov-Hausdorff distance* between two based metric spaces M and M'.

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 0●000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000

The Hull as an Orbit

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00●00 000	Foliated Spaces	Topology of The Hull 00000 00000 000
The Hull as an	Orbit			

The *orbit* of a tiling T is the set

$$\mathcal{O}(T) := \left\{ T - x \mid x \in \mathbb{R}^d \right\}$$

三日 のへの

Image: A matrix

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00●00 000	Foliated Spaces	Topology of The Hull 00000 00000 000
The Hull as an	Orbit			

The *orbit* of a tiling T is the set

$$\mathcal{O}(T) := \left\{ T - x \mid x \in \mathbb{R}^d \right\}$$

Definition (The Hull: Version 1)

The hull Ω_T of a tiling T is the closure of $\mathcal{O}(T)$ in the tiling metric.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ००●०० ०००	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an	Orbit			

The *orbit* of a tiling T is the set

$$\mathcal{O}(T) := \left\{ T - x \mid x \in \mathbb{R}^d \right\}$$

Definition (The Hull: Version 1)

The hull Ω_T of a tiling T is the closure of $\mathcal{O}(T)$ in the tiling metric.

Note

The hull Ω_T is closed under translation by \mathbb{R}^d , and complete in the tiling metric, and is therefore called a *tiling space*.

	00000 00000 000
The Hull as an Orbit	

Kyle Hansen (UCSB)

April 6, 2022

13/42

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 0000● 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an O	rbit			
Theorem				
If T is a si	imple tiling, Ω	$\mathfrak{Q}_{\mathcal{T}}$ is a compact me	etric space.	
Proof.				
)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 0000● 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an Or	bit			

If T is a simple tiling, Ω_T is a compact metric space.

Proof.

Take a sequence $\{T_i\} \subset \Omega_T$. For each r > 0, there are only finitely many patches around balls of radius r up to translation. So there is a subsequence which converges on $B_r(0)$.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 0000● 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an Or	bit			

If T is a simple tiling, Ω_T is a compact metric space.

Proof.

Take a sequence $\{T_i\} \subset \Omega_T$. For each r > 0, there are only finitely many patches around balls of radius r up to translation. So there is a subsequence which converges on $B_r(0)$. If R > r, and a sequence converges on B_R , it converges on B_r .

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 0000● 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an C)rhit			

If T is a simple tiling, Ω_T is a compact metric space.

Proof.

Take a sequence $\{T_i\} \subset \Omega_T$. For each r > 0, there are only finitely many patches around balls of radius r up to translation. So there is a subsequence which converges on $B_r(0)$. If R > r, and a sequence converges on B_R , it converges on B_r . Use Cantor's diagonalization to obtain a sequence that converges on every bounded set $B_1, B_2, \ldots, B_n, \ldots$. The resulting sequence converges on every bounded set and so is Cauchy (i.e. convergent).

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 0000● 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an C)rbit			

If T is a simple tiling, Ω_T is a compact metric space.

Proof.

Take a sequence $\{T_i\} \subset \Omega_T$. For each r > 0, there are only finitely many patches around balls of radius r up to translation. So there is a subsequence which converges on $B_r(0)$. If R > r, and a sequence converges on B_R , it converges on B_r . Use Cantor's diagonalization to obtain a sequence that converges on every bounded set $B_1, B_2, \ldots, B_n, \ldots$. The resulting sequence converges on every bounded set and so is Cauchy (i.e. convergent).

Note

There are a few other tiling spaces of interest, namely allowing the Euclidean rotations of T. In general these give new tiling spaces.

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling ○○○○○ ●○○	Foliated Spaces	Topology of The Hull 00000 00000 000
The Hull as an I	nverse Limit			

Definition (The Hull: Version 2)

э

三日 のへの

< • • • **6**

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ●○○	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an	Inverse Limit			

Definition (The Hull: Version 2)

For each $n \in \mathbb{N}$, let Γ_n be the possible instructions for laying *n* layers of tiles around some tile at the origin (called the *n*-th Gähler approximant). Let $f_n : \Gamma_{n+1} \to \Gamma_n$ be the forgetful map. The hull of T is the inverse limit

 $\Omega_{\mathcal{T}} := \varprojlim \Gamma_n$

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ●○○	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 0000
The Hull as an	Inverse Limit			

Definition (The Hull: Version 2)

For each $n \in \mathbb{N}$, let Γ_n be the possible instructions for laying *n* layers of tiles around some tile at the origin (called the *n*-th Gähler approximant). Let $f_n : \Gamma_{n+1} \to \Gamma_n$ be the forgetful map. The hull of T is the inverse limit

$$\Omega_{\mathcal{T}} := \varprojlim \Gamma_n$$

Note

This gives some more intuition about the hull: if $T' \in \Omega_T$, then every patch of T' is found somewhere in a translate of T, and gives the same space as in orbit-closure definition, but with some more clear structure.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○●○	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an Inv	verse Limit			

If T is a simple tiling, Ω_T a compact metric space.

Proof.

ъ.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○●○	Foliated Spaces	Topology of The Hull 00000 00000 000
The Hull as an I	Inverse Limit			

If T is a simple tiling, Ω_T a compact metric space.

Proof.

Each Γ_n is a compact branched manifold, the inverse limit of which is a compact metric space.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○●○	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an	Inverse Limit			

If T is a simple tiling, Ω_T a compact metric space.

Proof.

Each Γ_n is a compact branched manifold, the inverse limit of which is a compact metric space.

Note

We'll see some other advantages to this perspective later on when we study the cohomology of $\Omega_{\mathcal{T}}.$

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling ○○○○○ ○●○	Foliated Spaces	Topology of The Hull 00000 00000 000	
The Hull as an Inverse Limit					

If T is a simple tiling, Ω_T a compact metric space.

Proof.

Each Γ_n is a compact branched manifold, the inverse limit of which is a compact metric space.

Note

We'll see some other advantages to this perspective later on when we study the cohomology of Ω_T .

Question: How does the action of \mathbb{R}^d on \mathcal{T} interact with the hull $\Omega_{\mathcal{T}}$?
Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○○●	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 0000
The Hull as an I	nverse Limit			

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○○●	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 0000
The Hull as an In	verse Limit			

17 / 42

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○○●	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 0000
The Hull as an Ir	iverse Limit			

17 / 42

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○○●	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an In	verse Limit			

Tiling Spaces

April 6, 2022

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○○●	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an In	verse Limit			

Tiling Spaces

April 6, 2022

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling ○○○○○ ○○●	Foliated Spaces 0000 00	Topology of The Hull 00000 00000 000
The Hull as an Ir	iverse Limit			

lotivation	Ti

Tilings of ℝ^d 0000 The Hull of a Tiling

Foliated Spaces

Topology of The Hull

The Hull as an Inverse Limit

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling ○○○○○ ○○●	Foliated Spaces 0000 00	
The Hull as an	Inverse Limit			

• •

Motivation	Tilings of \mathbb{R}^d	The Hull of a Tiling	Foli
		00000	000

Foliated Spaces

Topology of The Hull

The Hull as an Inverse Limit

Motivation	Tilings	of

The Hull of a Tiling 00000 00● Foliated Spaces

Topology of The Hull

The Hull as an Inverse Limit

lotivation	Tilings

The Hull of a Tiling ○○○○ ○○● Foliated Spaces

Topology of The Hull

The Hull as an Inverse Limit

Kyle Hansen (UCSB)

April 6, 2022

17 / 42

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ●000 ○0	Topology of The Hull 00000 00000 000
Basic Ideas				

Kv	le H	ansen ((UCSB)
1 X Y		ansen j	

三日 のへの

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ●000 ○0	Topology of The Hull 00000 00000 000
Basic Ideas				

A foliated space X of dimension p is a separable, metrizable space X together with a maximal collection of charts $\{\phi_{\alpha} : U_{\alpha} \to L_{\alpha} \times N_{\alpha}\}$ with $L_{\alpha} \subset \mathbb{R}^{p}$ open, where

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ●000 ○0	Topology of The Hull 00000 00000 000
Basic Ideas				

A foliated space X of dimension p is a separable, metrizable space X together with a maximal collection of charts $\{\phi_{\alpha} : U_{\alpha} \to L_{\alpha} \times N_{\alpha}\}$ with $L_{\alpha} \subset \mathbb{R}^{p}$ open, where

1 if $\phi_{\alpha} = (t, n)$ then change of coordinates is given by $t' = \phi(t, n)$ and $n' = \psi(n)$ for some local homeomorphism ψ

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ●000 ○0	Topology of The Hull 00000 00000 000
Basic Ideas				

A foliated space X of dimension p is a separable, metrizable space X together with a maximal collection of charts $\{\phi_{\alpha} : U_{\alpha} \to L_{\alpha} \times N_{\alpha}\}$ with $L_{\alpha} \subset \mathbb{R}^{p}$ open, where

1 if $\phi_{\alpha} = (t, n)$ then change of coordinates is given by $t' = \phi(t, n)$ and $n' = \psi(n)$ for some local homeomorphism ψ

2 for each *n*, the transition map $\phi_{\beta} \circ \phi_{\alpha}^{-1}(-, n) : L_{\alpha} \to L_{\beta}$ is smooth.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ●000 ○0	Topology of The Hull 00000 00000 000
Basic Ideas				

A foliated space X of dimension p is a separable, metrizable space X together with a maximal collection of charts $\{\phi_{\alpha} : U_{\alpha} \to L_{\alpha} \times N_{\alpha}\}$ with $L_{\alpha} \subset \mathbb{R}^{p}$ open, where

• if $\phi_{\alpha} = (t, n)$ then change of coordinates is given by $t' = \phi(t, n)$ and $n' = \psi(n)$ for some local homeomorphism ψ

2 for each *n*, the transition map $\phi_{\beta} \circ \phi_{\alpha}^{-1}(-, n) : L_{\alpha} \to L_{\beta}$ is smooth.

Note

A *level surface* is a piece $L_{\alpha} \times \{n\} \subset L_{\alpha} \times N_{\alpha}$. These level surfaces coalesce to create connected components called "leaves". The final condition above tells us that transition functions are smooth on leaves

A ∃ ► ∃ = < < < </p>

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ○●○○ ○○	Topology of The Hull 00000 00000 000
D : 11				

Basic Ideas

Figure: Transition Maps of a Foliated Manifold

Kv	le F	lansen	(1	JCS	B)
	_		× ·		- /

= 990

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 00●0 00	Topology of The Hull 00000 00000 0000
Basic Ideas				

Figure: The Kronecker Foliation of the Torus

Kv	le l	lan	sen	(U)	CSB)
•••				\sim	200

• • • • • • • • •

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 000● 00	Topology of The Hull 00000 00000 000
Basic Ideas				

Example (Submersions and Fiber Bundles)

1 2 1			1		\sim
K v/	A H 2	ncon		5	21
1 \ y 1	e na	IISCII			

< 47 ▶

₹ = < <

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 000● 00	Topology of The Hull 00000 00000 000
Basic Ideas				

Example (Submersions and Fiber Bundles)

A submersion $f: M^{p+q} \to N^q$ induces *p*-dimensional foliation with leaves the connected components of $f^{-1}(n)$.

3 N 2 1 2 N 0 0

Example (Submersions and Fiber Bundles)

A submersion $f: M^{p+q} \rightarrow N^q$ induces *p*-dimensional foliation with leaves the connected components of $f^{-1}(n)$.

If E^{p+q} is a fiber bundle

then E is foliated by F if F is connected.

Kyle Hansen (U	JCSE	3)
---------------	---	-------------	----

<ロト < 同ト < 目ト < 目ト 三日 の Q ()

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ○○○○ ●○	Topology of The Hull 00000 00000 000
The Hull as a F	oliated Space			

Foliation of the Hull

三日 のへの

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ○○○○ ●○	Topology of The Hull 00000 00000 000
The Hull as a F	oliated Space			

Foliation of the Hull

Definition

Let P be a tiling of \mathbb{R}^d , and let $P' \in \Omega_T$. An ε -transveral of P' is

$$\mathcal{T}_{P',arepsilon} := \left\{ P'' \in \Omega_{\mathcal{T}} \mid B(0,arepsilon^{-1}) \cap P'' = B(0,arepsilon^{-1}) \cap P'
ight\}$$

I= nan

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ○○○○ ●○	Topology of The Hull 00000 00000 000
The Hull as a F	oliated Space			

Foliation of the Hull

Definition

Let P be a tiling of \mathbb{R}^d , and let $P' \in \Omega_T$. An ε -transveral of P' is

$$\mathcal{T}_{\mathcal{P}',arepsilon} := ig\{ \mathcal{P}'' \in \Omega_{\mathcal{T}} \mid B(0,arepsilon^{-1}) \cap \mathcal{P}'' = B(0,arepsilon^{-1}) \cap \mathcal{P}' ig\}$$

Example

If T is the half-and-half tiling, and T' is an all-blue tiling, then the ε -transversal of T' is the collection of tilings which all have only blue tiles up to radius ε^{-1} around the basepoint, and whose basepoints align with those of T'.

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ○○○○ ○●	Topology of The Hull 00000 00000 000
The Hull as a F	oliated Space			

Note

Because our tilings have finite local complexity, the action of \mathbb{R}^d is locally free. So for any $T'' \in \mathcal{T}_{T',\varepsilon}$, the action of \mathbb{R}^d takes us outside the transversal. That is, $\mathcal{T}_{T',\varepsilon}$ is transverse to the action of \mathbb{R}^d .

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ○○○○ ○●	Topology of The Hull 00000 00000 000
The Hull as a F	oliated Space			

Note

Because our tilings have finite local complexity, the action of \mathbb{R}^d is locally free. So for any $T'' \in \mathcal{T}_{T',\varepsilon}$, the action of \mathbb{R}^d takes us outside the transversal. That is, $\mathcal{T}_{T',\varepsilon}$ is transverse to the action of \mathbb{R}^d .

Theorem

The hull of a simple tiling is a foliated space.

Proof.

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces ○○○○ ○●	Topology of The Hull 00000 00000 000
The Hull as a F	oliated Space			

Note

Because our tilings have finite local complexity, the action of \mathbb{R}^d is locally free. So for any $T'' \in \mathcal{T}_{T',\varepsilon}$, the action of \mathbb{R}^d takes us outside the transversal. That is, $\mathcal{T}_{T',\varepsilon}$ is transverse to the action of \mathbb{R}^d .

Theorem

The hull of a simple tiling is a foliated space.

Proof.

The topology of Ω_T is generated by open sets of the form $B(0,\varepsilon) \times \mathcal{T}_{T',\varepsilon}$. This happens in such a way that transition functions are "nice", giving Ω_T a foliated structure.

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ●0000 00000 000	
Three Cohomology Theories					

Three Cohomologies of Ω_T

三日 のへの

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ●0000 00000 000	
Three Cohomology Theories					

Three Cohomologies of $\Omega_{\mathcal{T}}$

1 Čech Cohomology

-

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ●0000 00000 000	
Three Cohomology Theories					

Three Cohomologies of $\Omega_{\mathcal{T}}$

- Čech Cohomology
- 2 Pattern-Equivariant Cohomology

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ●0000 00000 000	
Three Cohomology Theories					

Three Cohomologies of $\Omega_{\mathcal{T}}$

- Čech Cohomology
- 2 Pattern-Equivariant Cohomology
- 3 Foliated Cohomology

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○●○○○ ○○○○○ ○○○	
Three Cohomology Theories					

Čech Cohomology of $\Omega_{\mathcal{T}}$

三日 のへの

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○●○○○ ○○○○○ ○○○○	

Čech Cohomology of $\Omega_{\mathcal{T}}$

Čech Cohomology

If \mathcal{U} is an open cover of X, and $N(\mathcal{U})$ is the *nerve of* \mathcal{U} , then $\check{H}^*(\mathcal{U}) = H^*(N(\mathcal{U}))$, and $\check{H}^*(X) := \varinjlim \check{H}^*(\mathcal{U})$.

5 D E E D Q ()

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 0●000 00000 0000

Three Cohomology Theories

Čech Cohomology of $\Omega_{\mathcal{T}}$

Čech Cohomology

If \mathcal{U} is an open cover of X, and $N(\mathcal{U})$ is the *nerve of* \mathcal{U} , then $\check{H}^*(\mathcal{U}) = H^*(N(\mathcal{U}))$, and $\check{H}^*(X) := \varinjlim \check{H}^*(\mathcal{U})$.

Theorem

$$\check{H}^*(\Omega_T) = \check{H}^*(\varprojlim \Gamma_n) = \varinjlim \check{H}^*(\Gamma_n)$$

Proof.

< 4 ₽ >

(4) (3) (4) (3)

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 0●000 00000 0000

Three Cohomology Theories

Čech Cohomology of $\Omega_{\mathcal{T}}$

Čech Cohomology

If \mathcal{U} is an open cover of X, and $N(\mathcal{U})$ is the *nerve of* \mathcal{U} , then $\check{H}^*(\mathcal{U}) = H^*(N(\mathcal{U}))$, and $\check{H}^*(X) := \varinjlim \check{H}^*(\mathcal{U})$.

Theorem

$$\check{H}^*(\Omega_T) = \check{H}^*(\varprojlim \Gamma_n) = \varinjlim \check{H}^*(\Gamma_n)$$

Proof.

The first equality is by definition of Ω_T . The second follows because each Γ_n is a branched manifold, and so the covers from Čech cohomology are "nice enough" for the limits to commute as they do.

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(4.3.)

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00●00 00000 000	
Three Cohomology Theories					

PE Cohomology

Definition (Strongly Pattern Equivariant)

ELE NOR
Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00●00 00000 0000
Three Cohomology	Theories			

Definition (Strongly Pattern Equivariant)

A smooth function $f : T \to \mathbb{R}$ is *PE with radius* R > 0 if whenever [B(x, R)] = [B(y, R)], then f(x) = f(y).

ELE SQC

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00●00 00000 000
Three Cohomology	Theories			

Definition (Strongly Pattern Equivariant)

A smooth function $f : T \to \mathbb{R}$ is *PE with radius* R > 0 if whenever [B(x, R)] = [B(y, R)], then f(x) = f(y). A function is *strongly PE* if it is PE for some R > 0.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00●00 00000 000
Three Cohomology	Theories			

Definition (Strongly Pattern Equivariant)

A smooth function $f : T \to \mathbb{R}$ is *PE with radius* R > 0 if whenever [B(x, R)] = [B(y, R)], then f(x) = f(y). A function is *strongly PE* if it is PE for some R > 0.

Definition (Weakly Pattern Equivariant)

A function $T \to \mathbb{R}$ which is a uniform limit of strongly-PE functions is a *weakly-PE* function.

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00●00 00000 0000
Three Cohomology	Theories			

Definition (Strongly Pattern Equivariant)

A smooth function $f : T \to \mathbb{R}$ is *PE with radius* R > 0 if whenever [B(x, R)] = [B(y, R)], then f(x) = f(y). A function is *strongly PE* if it is PE for some R > 0.

Definition (Weakly Pattern Equivariant)

A function $T \to \mathbb{R}$ which is a uniform limit of strongly-PE functions is a *weakly-PE* function.

Note

If we instead consider functions $T \to \mathbb{Z}$ we get an analogous theory for \mathbb{Z} -coefficients, though w-PE and s-PE are identical.

Definition

A strongly (weakly) PE k-form is a differential form on T

$$\omega = \sum_{|\mathcal{I}|=k} f_{\mathcal{I}} dx^{\mathcal{I}}$$

where each $f_{\mathcal{I}}$ is strongly (weakly) PE.

Definition

A strongly (weakly) PE k-form is a differential form on T

$$\omega = \sum_{|\mathcal{I}|=k} f_{\mathcal{I}} dx^{\mathcal{I}}$$

where each $f_{\mathcal{I}}$ is strongly (weakly) PE. The collection of such forms is denoted $C_{s-PE}^{k}(\mathcal{T})$ (resp. $C_{w-PE}^{k}(\mathcal{T})$).

Definition

A strongly (weakly) PE k-form is a differential form on T

$$\omega = \sum_{|\mathcal{I}|=k} f_{\mathcal{I}} dx^{\mathcal{I}}$$

where each $f_{\mathcal{I}}$ is strongly (weakly) PE. The collection of such forms is denoted $C_{s-PE}^{k}(\mathcal{T})$ (resp. $C_{w-PE}^{k}(\mathcal{T})$).

Theorem

Let d be the exterior derivative. Then

$$C^{\bullet}_{s-PE}(T): \cdots \to C^{k}_{s-PE}(T) \xrightarrow{d} C^{k+1}_{s-PE}(T) \to \cdots$$

is a chain complex (resp. $C^{\bullet}_{w-PE}(T)$), with cohomology $H^*_{s-PE}(T)$ (resp. $H^*_{w-PE}(T)$).

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull 0000● 00000 0000
Three Cohomol	ogy Theories			

Definition

Let M be a foliated space. Let

$$C^{\infty}_{tlc}(M) = \left\{ f : M \to \mathbb{R} \right.$$

f is continuous, leafwise-smooth, andlocally constant in the transverse direction

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull 0000● 00000 0000
Three Cohomolo	ogy Theories			

Definition

Let M be a foliated space. Let

$$C_{tlc}^{\infty}(M) = \begin{cases} f: M \to \mathbb{R} & \text{is continuous, leafwise-smooth, and} \\ \text{locally constant in the transverse direction} \end{cases}$$

Let $C^{\infty}_{\tau}(M) = \text{closure}(C^{\infty}_{tlc}(M))$. Let $C^{k}_{tlc/\tau}(M)$ be the tlc/τ k-forms.

3 P E E 1 P P P

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull 0000● 00000 0000
Three Cohomol	ogy Theories			

Definition

Let M be a foliated space. Let

$$C^{\infty}_{tlc}(M) = \begin{cases} f: M \to \mathbb{R} & \text{is continuous, leafwise-smooth, and} \\ \text{locally constant in the transverse direction} \end{cases}$$

Let $C^{\infty}_{\tau}(M) = \text{closure}(C^{\infty}_{tlc}(M))$. Let $C^{k}_{tlc/\tau}(M)$ be the tlc/τ k-forms.

Theorem

$$C^{ullet}_{tlc}(M): \cdots \to C^k_{tlc}(M) \xrightarrow{d} C^{k+1}_{tlc}(M) \to \cdots$$

is a chain complex (resp. $C^{\bullet}_{\tau}(M)$), with cohomology $H^*_{tlc}(M)$ (resp. $H^*_{\tau}(M)$).

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 0000● 00000 0000
Three Cohomol	ogy Theories			

Definition

Let M be a foliated space. Let

$$C^{\infty}_{tlc}(M) = \left\{ f: M \to \mathbb{R} \middle| \begin{array}{c} f \text{ is continuous, leafwise-smooth, and} \\ \text{locally constant in the transverse direction} \end{array} \right\}$$

Let $C^{\infty}_{\tau}(M) = \text{closure}(C^{\infty}_{tlc}(M))$. Let $C^{k}_{tlc/\tau}(M)$ be the tlc/τ k-forms.

Theorem

$$C^{ullet}_{tlc}(M): \cdots o C^k_{tlc}(M) \xrightarrow{d} C^{k+1}_{tlc}(M) o \cdots$$

is a chain complex (resp. $C^{\bullet}_{\tau}(M)$), with cohomology $H^*_{tlc}(M)$ (resp. $H^*_{\tau}(M)$). The maximal Hausdorff quotient of $H^*_{\tau}(M)$ is denoted $\overline{H}^*_{\tau}(M)$.

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 0000 000
Relating the Cohor	nologies			

315

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ●○○○○ ○○○
Palatientle Calendaria				

Theorem (Kellendonk-Putnam, 2005)

If T is a simple tiling, then $H^*_{s-PE}(T) = \check{H}^*(\Omega_T)$

< = ► = = < < <

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ●○○○○ ○○○

Theorem (Kellendonk-Putnam, 2005)

If T is a simple tiling, then $H^*_{s-PE}(T)=\check{H}^*(\Omega_T)$

Lemma

If M is a branched manifold, $\check{H}^*(M) = H^*_{deRham}(M)$.

ヨト ヨヨ わすゆ

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ●○○○○ ○○○
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Theorem (Kellendonk-Putnam, 2005)

If T is a simple tiling, then $H^*_{s-PE}(T) = \check{H}^*(\Omega_T)$

Lemma

If M is a branched manifold,
$$\check{H}^*(M) = H^*_{deRham}(M)$$
.

Note

Kellendonk and Putnam's original proof does not use this fact. Instead, they apply a more general theory of foliations and dynamical systems to prove their result.

▲ ∃ ► ∃ = √ Q ∩

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 0000 000	
Relating the Co	phomologies				
Lemma					

Let $\pi_n : \mathbb{R}^d \to \Gamma_n$ be the natural projection $\Omega_T \to \Gamma_n$ restricted to $\mathcal{O}(T)$.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○●○○○ ○○○
Relating the Col	nomologies			

Let $\pi_n : \mathbb{R}^d \to \Gamma_n$ be the natural projection $\Omega_T \to \Gamma_n$ restricted to $\mathcal{O}(T)$. There is a correspondence $\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

 $n \in \mathbb{N}$

Proof.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○○○○ ○○○
Relating the Col	homologies			

Let $\pi_n : \mathbb{R}^d \to \Gamma_n$ be the natural projection $\Omega_T \to \Gamma_n$ restricted to $\mathcal{O}(T)$. There is a correspondence $\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup_{n \in \mathbb{N}} \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

Proof.

Let $R_n > r_n > 0$ be such that for any $T' \in \Omega_T$, the ball $B(0, r_n)$ is contained in n layers of tiles around the origin, and $B(0, R_n)$ contains n layers of tiles around the origin.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○○○○ ○○○
Relating the Col	homologies			

Let $\pi_n : \mathbb{R}^d \to \Gamma_n$ be the natural projection $\Omega_T \to \Gamma_n$ restricted to $\mathcal{O}(T)$. There is a correspondence $\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup_{n \in \mathbb{N}} \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

Proof.

Let $R_n > r_n > 0$ be such that for any $T' \in \Omega_T$, the ball $B(0, r_n)$ is contained in n layers of tiles around the origin, and $B(0, R_n)$ contains n layers of tiles around the origin. (Such radii exist because T is simple.)

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○○○○
Relating the Coh	omologies			

Let $\pi_n : \mathbb{R}^d \to \Gamma_n$ be the natural projection $\Omega_T \to \Gamma_n$ restricted to $\mathcal{O}(T)$. There is a correspondence $\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup_{n \in \mathbb{N}} \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

Proof.

Let $R_n > r_n > 0$ be such that for any $T' \in \Omega_T$, the ball $B(0, r_n)$ is contained in n layers of tiles around the origin, and $B(0, R_n)$ contains n layers of tiles around the origin. (Such radii exist because T is simple.)

Suppose $f : \Gamma_n \to \mathbb{R}$ is smooth.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○●○○○ ○○○
Polating the Col	omologios			

Let $\pi_n : \mathbb{R}^d \to \Gamma_n$ be the natural projection $\Omega_T \to \Gamma_n$ restricted to $\mathcal{O}(T)$. There is a correspondence $\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

 $n \in \mathbb{N}$

Proof.

Let $R_n > r_n > 0$ be such that for any $T' \in \Omega_T$, the ball $B(0, r_n)$ is contained in n layers of tiles around the origin, and $B(0, R_n)$ contains n layers of tiles around the origin. (Such radii exist because T is simple.)

Suppose $f : \Gamma_n \to \mathbb{R}$ is smooth. If $[B(x, R_n)] = [B(y, R_n)]$ then $\pi_n(x) = \pi_n(y)$, so $f \circ \pi_n$ is strongly PE with radius R_n .

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○○○○ ○○○
Relating the Coh	omologies			

Let $\pi_n : \mathbb{R}^d \to \Gamma_n$ be the natural projection $\Omega_T \to \Gamma_n$ restricted to $\mathcal{O}(T)$. There is a correspondence $\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

 $n \in \mathbb{N}$

Proof.

Let $R_n > r_n > 0$ be such that for any $T' \in \Omega_T$, the ball $B(0, r_n)$ is contained in n layers of tiles around the origin, and $B(0, R_n)$ contains n layers of tiles around the origin. (Such radii exist because T is simple.)

Suppose $f : \Gamma_n \to \mathbb{R}$ is smooth. If $[B(x, R_n)] = [B(y, R_n)]$ then $\pi_n(x) = \pi_n(y)$, so $f \circ \pi_n$ is strongly PE with radius R_n .

Let $g : \mathbb{R}^d \to \mathbb{R}$ be strongly PE with radius $R < r_n$.

Motivation 000	Tilings of ℝ ^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○○○○
Relating the Coh	mologies			

Let $\pi_n : \mathbb{R}^d \to \Gamma_n$ be the natural projection $\Omega_T \to \Gamma_n$ restricted to $\mathcal{O}(T)$. There is a correspondence $\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

 $n \in \mathbb{N}$

Proof.

Let $R_n > r_n > 0$ be such that for any $T' \in \Omega_T$, the ball $B(0, r_n)$ is contained in n layers of tiles around the origin, and $B(0, R_n)$ contains n layers of tiles around the origin. (Such radii exist because T is simple.)

Suppose $f : \Gamma_n \to \mathbb{R}$ is smooth. If $[B(x, R_n)] = [B(y, R_n)]$ then $\pi_n(x) = \pi_n(y)$, so $f \circ \pi_n$ is strongly PE with radius R_n .

Let $g : \mathbb{R}^d \to \mathbb{R}$ be strongly PE with radius $R < r_n$. Then $f : \Gamma_n \to \mathbb{R}$ defined by $f(\pi_n(x)) := g(x)$ is well-defined on all of Γ_n and smooth.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○●○○ ○○○
Relating the Co	homologies			

Kv	le H	ansen ((UCSB)
1 X Y		ansen j	

Image: A matrix and a matrix

₹ E < ØQ@

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○●○○ ○○○
Relating the Co	homologies			

$$H^*_{s-PE}(T) = \frac{\text{Closed PE forms on } T}{\text{Exact PE forms on } T}$$

-

Image: A matrix and a matrix

▲ 표 ▶ 표 ■ ● ● ● ●

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○●○○ ○○○
Relating the Co	homologies			

$$H_{s-PE}^{*}(T) = \frac{\text{Closed PE forms on } T}{\text{Exact PE forms on } T}$$
$$= \frac{\underset{lim}{\text{lim} \text{Closed forms on } \Gamma_n}}{\underset{lim}{\text{Exact forms on } \Gamma_n}}$$

Kν	le ŀ	lans	en (U(CSB)
					/

Image: A matrix and a matrix

▲ 표 ▶ 표 ■ ● ● ● ●

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull 00000 00●00 000
Relating the Co	homologies			

$$H_{s-PE}^{*}(T) = \frac{\text{Closed PE forms on } T}{\text{Exact PE forms on } T}$$
$$= \frac{\varinjlim \text{Closed forms on } \Gamma_n}{\varinjlim \text{Exact forms on } \Gamma_n}$$
$$= \varinjlim H_{deRham}^{*}(\Gamma_n)$$

Image: A matrix and a matrix

▲ 표 ▶ 표 ■ ● ● ● ●

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○●○○ ○○○
Relating the Co	homologies			

$$H_{s-PE}^{*}(T) = \frac{\text{Closed PE forms on } T}{\text{Exact PE forms on } T}$$
$$= \frac{\varinjlim \text{Closed forms on } \Gamma_n}{\varinjlim \text{Exact forms on } \Gamma_n}$$
$$= \varinjlim H_{deRham}^{*}(\Gamma_n)$$
$$= \varinjlim \check{H}^{*}(\Gamma_n, \mathbb{R})$$

Kyle Hansen (UCSB)

Image: A matrix and a matrix

₹ E < ØQ@

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○●○○ ○○○
Relating the Co	homologies			

$$H_{s-PE}^{*}(T) = \frac{\text{Closed PE forms on } T}{\text{Exact PE forms on } T}$$
$$= \frac{\underset{im}{\lim} \text{Closed forms on } \Gamma_n}{\underset{im}{\lim} \text{Exact forms on } \Gamma_n}$$
$$= \underset{im}{\lim} H_{deRham}^{*}(\Gamma_n)$$
$$= \underset{im}{\lim} \check{H}^{*}(\Gamma_n, \mathbb{R})$$
$$= \check{H}^{*}(\underset{im}{\lim} \Gamma_n, \mathbb{R})$$

Image: A matrix and a matrix

₹ E < ØQ@

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○○●○○ ○○○
Relating the Co	homologies			

$$H_{s-PE}^{*}(T) = \frac{\text{Closed PE forms on } T}{\text{Exact PE forms on } T}$$
$$= \frac{\underset{im}{\text{Im Closed forms on } \Gamma_n}}{\underset{im}{\text{Exact forms on } \Gamma_n}}$$
$$= \underset{im}{\underset{im}{\text{H}_{deRham}^{*}}(\Gamma_n)}$$
$$= \underset{im}{\underset{im}{\text{H}_{deRham}^{*}}(\Gamma_n, \mathbb{R})}$$

Kyle Hansen (UCSB)

Image: A matrix and a matrix

∃▶ ∃⊨ のへ⊙

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○○○●○ ○○○
Relating the Co	homologies			

Theorem

$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$

Proof.

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○○●○ ○○○
Polating the Co	homologies			

Theorem

$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$

Proof.

This is essentially a consequence of the lemma earlier that

$\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup_{n \in \mathbb{N}} \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

∃ ► ∃ = <> <</p>

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces	Topology of The Hull ○○○○○ ○○○●○ ○○○
Relating the Co	homologies			

Theorem

$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$

Proof.

This is essentially a consequence of the lemma earlier that

$\{\text{strongly PE functions on } T\} \longleftrightarrow \bigcup_{n \in \mathbb{N}} \{\text{smooth functions } f : \Gamma_n \to \mathbb{R}\}.$

See [KP06] for details.

3 D D E E 1 S Q C

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○○○ ○○○
Relating the Co	homologies			

Summary of Relationships

三日 のへの

Motivation 000	Tilings of \mathbb{R}^d 0000	The Hull of a Tiling 00000 000	Foliated Spaces 0000 00	Topology of The Hull ○○○○○ ○○○○○ ●○○
Example of PE-	Cohomology			

What's the Big Deal?

Pattern-Equivariant cohomology helps us recognize the generators of cohomology.

Recall

The "chair tiling" is the same as the "arrow tiling". We can describe the cohomology of the chair tiling using the arrow tiling.

34 / 42

The Hull of a Tiling

Foliated Spaces

Topology of The Hull

Example of PE-Cohomology

Representatives of the Arrow Tiling Cohomology

Proposition

If T is the arrow tiling, then the Čech cohomology groups of $\Omega_{\mathcal{T}}$ with integer coefficients is given by

$$\begin{split} \check{H}^0(\Omega_{\mathcal{T}}) &= \mathbb{Z} \\ \check{H}^1(\Omega_{\mathcal{T}}) &= \mathbb{Z} \left[1/2 \right]^2 \\ \check{H}^2(\Omega_{\mathcal{T}}) &= \frac{1}{3} \mathbb{Z} \left[1/4 \right] \oplus \mathbb{Z} \left[1/2 \right]^2 \end{split}$$

Kyle Hansen (UCSB)
Motivation	Tilings	

The Hull of a Tiling

Foliated Spaces

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

Motivation	Tilings	

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

Motivation	Tilings	o

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

$$(a,b)\in\check{H}^1(\Omega_{\mathcal{T}})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで April 6, 2022

Motivation	Tilings	of

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

$$(a,b)\in\check{H}^1(\Omega_{\mathcal{T}})$$

Motivation	Tilings

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

$$\left(\frac{a}{2^n},0
ight)\in\check{H}^1(\Omega_T)$$

a cocycle in Γ_n

l ilings	
	l ilings 0000

The Hull of a Tiling

Foliated Spaces

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

$$\left(0,rac{b}{2^m}
ight)\in\check{H}^1(\Omega_T)$$

a cocycle in Γ_m

Motivation	Tilings

lings of ℝ^a

The Hull of a Tiling

Foliated Spaces

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

$$\left(rac{1}{4^n},0,0
ight)\in\check{H}^2(\Omega_T)$$

Aotivation	Tilings

of ℝ^a T o

The Hull of a Tiling

Foliated Spaces

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

 $\left(rac{1}{4^n},0,0
ight)\in\check{H}^2(\Omega_T)$

/lotivation	Tilings

s of \mathbb{R}^a

The Hull of a Tiling

Foliated Spaces

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

 $\left(rac{1}{4^n},0,0
ight)\in\check{H}^2(\Omega_T)$

Notivation	Tilings

The Hull of a Tiling

Foliated Spaces

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

$$\left(rac{1}{4^n},0,0
ight)\in\check{H}^2(\Omega_T)$$

Notivation	Tilings

ℝ^d The 0000

ne Hull of a Tiling

Foliated Spaces

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

$$\left(0,\frac{1}{2^n},0
ight)\in\check{H}^2(\Omega_T)$$

lotivation	Tilings

ings of ℝ^a 00 The Hull of a Tiling

Foliated Spaces

Topology of The Hull

00000 00000 000

Example of PE-Cohomology

$$\left(0,0,rac{1}{2^n}
ight)\in\check{H}^2(\Omega_{\mathcal{T}})$$

Crete-ising The Discete

Definition

From Wikipedia: "The Hausdorff distance [between two metric subspaces X, Y of an ambient space M] is the longest distance you can be forced to travel by an adversary who chooses a point in one of the two sets, from where you then must travel to the other set."

▲ ∃ ► ∃ = √Q ∩

Definition

The Gromov-Hausdorff distance between two metric spaces is the infimum

$$d_{GH}(X,Y) := \inf_{f,g} d_H(f(X),g(Y))$$

over isometric embeddings $f, g: X, Y \hookrightarrow M$ into some ambient space M. In other words, it is the smallest possible separation between X and Y on any metric on their union.

The Idea

Rather than comparing tilings of \mathbb{R}^d using the tiling metric, we can compare \mathbb{R}^d with a given metric, using the Gromov-Hausdorff Distance. *Pointed* or *Based* GH space (*GHB*) tries to keep basepoints close together as well.

▲ Ξ ► Ξ Ξ < < < </p>

Definition

Let *M* be a manifold of bounded geometry (i.e., inj(M) > c > 0 and |K| < C), and let GHB(D) be Pointed Gromov-Hausdorff space of balls of radius D/2. Define $\Psi_D : M \to BGH$ by $\Psi_D(m) = B(m, \frac{D}{2})$.

Theorem

```
The image \Psi_D(M) \subseteq GBH(D) is precompact.
```

Proof.

Any uniformly totally bounded class of compact metric spaces is pre-compact in GH space. See [BBI01, 264f.] for more details.

- 4 目 1 - 4 日 1 - 5 - 4 日 1 - 9 0 0

Definition

The hull of a Manifold with Bounded Geometry is a subspace of GH space

$$\Lambda(M) := \varprojlim \operatorname{Closure}(\Psi_D(M))$$

Definition

The complex of differential forms which are continuous under GH correspondence creates a cohomology $H^*_{bg}(M)$. Compare this to the foliated and weakly-PE cohomologies.

Where'd All the Tilings Go? Tiling \longrightarrow Voronoi Diagram \longrightarrow Geometry \longrightarrow Mfld with BG

< 4³ ► <

▲ ∃ ► ∃ = √ Q ∩

References I

- Dmitri Burago, Yuri Burago, and Sergei Ivanov, *A course in metric geometry*, American Mathematical Society, 2001.
- Johannes Kellendonk and Ian Putnam, *The ruelle-sullivan map for actions of* ℝⁿ, Mathematische Annalen MATH ANN **334** (2006), 693–711.
- Calvin Moore and Claude Schochet, *Global anlaysis on foliated spaces*, Springer, 1988.
- Lorenzo Adlai Sadun, *Topology of tiling spaces*, University Lecture Series, vol. 46, American Mathematical Society, 2008.

TWON