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Motivation

Figure: Eight Allotropes of Carbon
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Figure: Three different kinds of material
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Basic Notions and Examples

Tilings of Rd

Definition
A tiling of Rd is a subdivision into pieces called "tiles".

A simple tiling is one in which
1 There is a finite collection {pi}ni=1 of prototiles such that every tile is

a translated copy of some pi .
2 Each tile is a polytope
3 If two tiles meet, they meet completely in one of their (d − 1)-faces.
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Basic Notions and Examples

Simple Tilings

Figure: Periodic Tilings
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Basic Notions and Examples

Simple Tilings

Figure: A Patch of the Penrose Tiling
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Basic Notions and Examples

Violating Hypotheses

Figure: A Pinwheel Tiling. Lacks finitely many prototiles up to translation.
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Basic Notions and Examples

Violating Hypotheses

Figure: Penrose Chickens. Tiles are not polytopes
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Basic Notions and Examples

Violating Hypotheses

Figure: A chair tiling. Edges don’t meet full-face to full-face
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The Hull of a Tiling

Definition (Tiling Metric)

Given two tilings, T and T ′, of Rd , they are ε-close if up to a translation
of distance ε, they agree on a ball of radius ε−1 around the origin.
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The Hull of a Tiling

Definition
The orbit of a tiling T is its orbit under translation

O(T ) :=
{
T − x | x ∈ Rd

}

Definition
A tiling space is a set of tilings which is closed under translation by Rd and
complete in the tiling metric.

Definition (The Hull: Version 1)
The hull ΩT of a tiling T is the completion of O(T ) in the tiling metric.
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The Hull of a Tiling
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The Hull of a Tiling

Definition (The Hull: Version 2)

Given a tiling T , for each n ∈ N, the nth Gähler complex Γn is the
collection of possible instructions for laying n layers of tiles around some
tile at the origin consistent with T . Let fn : Γn+1 → Γn be the forgetful
map. The hull of T is the inverse limit

ΩT := lim←−(Γn, fn) =

(∏
n∈N

Γn

)
/ ∼

Theorem
If T is a simple tiling, ΩT a compact metric space.

Proof.
Each Γn is a compact branched manifold, the inverse limit of which is a
compact metric space.
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The Hull of a Tiling

Figure: Transition Maps of a Foliated Manifold
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The Hull of a Tiling

Figure: The Kronecker Foliation of the Torus
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The Hull of a Tiling

Foliation of the Hull

Definition
Let T be a tiling of Rd , and let T ′ ∈ ΩT . An ε-transveral of T ′ is

TT ′,ε :=
{
T ′′ ∈ ΩT | B(0, ε−1) ∩ T ′′ = B(0, ε−1) ∩ T ′

}
=
{

tilings which agree with T ′ on a ball of
radius 1/ε when basepoints are aligned

}
Theorem
The hull of a simple tiling is a foliated space.

Proof.
Because our tilings have FLC, the action of Rd is locally free. So for any
T ′′ ∈ TT ′,ε, if v ∈ Rd with |v | small enough, T ′′ − v 6∈ TT ′,ε. That is,
TT ′,ε is transverse to the action of Rd .
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Cohomology of the Hull

Three Cohomologies of ΩT

1 Čech Cohomology
2 Pattern-Equivariant Cohomology
3 Foliated Cohomology
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Cohomology of the Hull

Čech Cohomology Ȟ∗(ΩT )

Definition
Ȟ∗(X ,R) = lim−→U H

∗(N(U),R)
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Cohomology of the Hull

PE Cohomology
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Cohomology of the Hull

Definition (Strongly Pattern Equivariant)
A smooth function f : T → R is PE with radius R > 0 if whenever
[B(x ,R)] = [B(y ,R)], then f (x) = f (y).

A function is strongly PE if it is
PE for some R > 0.

Definition (Weakly Pattern Equivariant)
A function T → R which is a uniform limit of strongly-PE functions is a
weakly-PE function.
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Cohomology of the Hull

Definition
A strongly (weakly) PE k-form is a differential form on T

ω =
∑
|I|=k

fIdx
I

where each fI is strongly (weakly) PE.

The collection of such forms is
denoted C k

s−PE (T ) (resp. C k
w−PE (T )).

Theorem (Definition)
C •s−PE (T ) and C •w−PE (T ) are cochain complexes under the exterior
derivative, with cohomologies H∗s−PE (T ) and H∗w−PE (T ) respectively.
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Cohomology of the Hull

Foliated Cohomology

Definition
Let X be a foliated space. Let

C k
tlc(X ) =

{
ω : X →

k∧
T ∗X

∣∣∣∣∣ ω is leafwise-smooth, and locally
constant in the transverse direction

}

C k
τ (X ) =

{
ω : X →

k∧
T ∗X

∣∣∣∣∣ ω is transversely continuous

}

Theorem
C •tlc(X ) and C •τ (X ) are cochain complexes with cohomologies H∗tlc(X ) and
H∗τ (X ) respectively. H∗τ (X ) is the maximal Hausdorff quotient of H∗τ (X ).
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Cohomology of the Hull

Comparing Cohomologies

Lemma
There is a correspondence

{strongly PE functions T → R} ←→ lim−→{smooth functions Γn → R}

Lemma
If M is a nice enough branched manifold, Ȟ∗(M,R) = H∗deRham(M).

Lemma
Ȟ∗(ΩT ,R) = Ȟ∗(lim←− Γn,R) = lim−→ Ȟ∗(Γn,R)
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Cohomology of the Hull

Theorem ([KP06], [Sad08])
Let T be a simple tiling. Then

1 H∗s−PE (T ) = Ȟ∗(ΩT ,R)

2 H∗s−PE (T ) = H∗tlc(ΩT ) and H∗w−PE (T ) = H∗τ (ΩT ).

Proof of 1.

H∗s−PE (T ) =
B∗s−PE (T )

Z ∗s−PE (T )

=
lim−→B∗(Γn)

lim−→Z ∗(Γn)

= lim−→H∗deRham(Γn)

= lim−→ Ȟ∗(Γn,R)

= Ȟ∗(lim←− Γn,R)

= Ȟ∗(ΩT ,R)
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2 H∗s−PE (T ) = H∗tlc(ΩT ) and H∗w−PE (T ) = H∗τ (ΩT ).

Proof of 1.

H∗s−PE (T ) =
B∗s−PE (T )

Z ∗s−PE (T )

=
lim−→B∗(Γn)

lim−→Z ∗(Γn)

= lim−→H∗deRham(Γn)

= lim−→ Ȟ∗(Γn,R)
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= Ȟ∗(ΩT ,R)

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 26 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])
Let T be a simple tiling. Then

1 H∗s−PE (T ) = Ȟ∗(ΩT ,R)
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Cohomology of the Hull

Summary of Relationships

Ȟ∗(ΩT ,R) H∗s−PE (T ) H∗tlc(ΩT )

H∗w−PE (T ) H∗τ (ΩT )

H
∗
τ (ΩT )
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Tilings With ILC

Definition
A tiling which contains only finitely many types of patches with diameter
less than some given R > 0 has finite local complexity (FLC). Otherwise, it
has infinite local complexity (ILC).
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Tilings With ILC

Shmuel Weinberger, et al.
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Basic Notions

Smoothing Things Over

Definition
A manifold Mn is said to have bounded geometry if there are constants
c ,C > 0 such that inj(M) > c > 0 and |K (M)| < C .

Creating Analogies

Tiling T Manifold M of BG

Tiling metric Gromov-Hausdroff metric

ΩT ΩM

H∗s−PE (T ) H∗s−GE (M)

Foliation on ΩT Pre-foliated structure on ΩM
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A New Metric

Definition (From Wikipedia)
"The Hausdorff distance [between two metric subspaces X ,Y of an
ambient space M] is the longest distance you can be forced to travel by an
adversary who chooses a point in one of the two sets, from where you then
must travel to the other set."

dH(X ,Y ) = max

{
sup
x∈X

d(x ,Y ), sup
y∈Y

d(X , y)

}
,
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A New Metric

Definition
The Gromov-Hausdorff distance between two metric spaces is the infimum

dGH(X ,Y ) := inf
f ,g

dH(f (X ), g(Y ))

over isometric embeddings f , g : X ,Y ↪→ M into some ambient space M.

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 35 / 50
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The Hull of a Manifold of BG

Definition
Let M be a manifold with bounded geometry and let GHB(D) be Pointed
Gromov-Hausdorff space of balls of diameter D. Define

ΨD : M → GHB(D)

m 7→ B(m,D/2)

Theorem
The image ΨD(M) ⊆ GHB(D) is precompact.

Proof.
Any uniformly totally bounded class of compact metric spaces is
pre-compact in GH space. See [BBI01, 264f.] for details.
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The Hull of a Manifold of BG

→

X

M
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The Hull of a Manifold of BG
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The Hull of a Manifold of BG

Definition
Let M be a manifold with bounded geometry. The hull ΩM of M is the
subspace of GHB defined by ΩM := lim←−ΨD(M).

Example
1 M is homogeneous iff ΨD(M) = • for all D > 0.
2 If M arises from a simple tiling T , then ΩM ' ΩT .
3 If X → M is a covering and M is compact and not too homogeneous,

then ΩX ' M. In particular, ΩM ' M.
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The Hull of a Manifold of BG

Almost-Flat Rn
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The Hull of a Manifold of BG

Universal Cover
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Cohomology of the Hull

Cohomology of the Hull

Recall
There is a correspondence

{PE forms on T with radius n} ←→ {smooth forms on Γn}

Definition
A smooth k-form ω on M is Geometry Equivariant with radius D/2 if there
is a continuous k-form ω̃ on ΨD(M) such that ω̃(ΨD(p)) = ω(p).

Definition
Let C k

s−GE (M) =
{
ω ∈ Ωk(M) | ω and dω are GE with some radius R

}
.

Let H∗s−GE (M) be the cohomology of the cochain complex C •s−GE (M).
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Cohomology of the Hull

Example

If M is homogeneous, then C k
s−GE (M) =

{
ω ∈ Ωk(M) | ω is constant

}
.

Example
Let M be symmetric of noncompact type, tiled by a Γ-equivariant tiling,
where Γ y M is geometric. Then ΩM = M/Γ and H∗s−GE (M) = H∗(M/Γ).

Example
If M as above has a single impurity, then H∗s−GE (M) = H∗(M/Γ)⊕ R[n].

Proof.
C k
s−GE (M) = C k(M/Γ)⊕ C k

c (M)
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The Prefoliated Structure

The Prefoliated Structure on the Hull

Definition (Leaves of the Hull)
For each p̃ = (N, p) ∈ ΩM , define Ψ : (N, p)→ ΩM by

Ψ(q) = lim
GHB

B(q,D) = (N, q).

Note that Ψ(p) = p̃. The leaf through p̃ is the image L(p̃) := Ψ(N, p).

The prefoliated structure on ΩM is the collection {Ψ : p̃ → L(p̃)}.
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Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 44 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

The Prefoliated Structure

Back to Almost-Flat Rn

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 44 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

The Prefoliated Structure

Back to Almost-Flat Rn

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 44 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

The Prefoliated Structure

Back to Universal Covers

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 45 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

The Prefoliated Structure

Back to Universal Covers

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 45 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

The Prefoliated Structure

Back to Universal Covers

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 45 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

The Prefoliated Structure

Back to Universal Covers

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 45 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

The Prefoliated Structure

Back to Universal Covers

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 45 / 50



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

The Prefoliated Structure

Back to Universal Covers

Kyle Hansen (UCSB) Tiling Spaces May 24, 2022 45 / 50



Outline

1 Motivation

2 Tilings of Rd

Basic Notions and Examples
The Hull of a Tiling
Cohomology of the Hull
Tilings With ILC

3 Manifolds with Bounded Geometry
A New Metric
The Hull of a Manifold of BG
Cohomology of the Hull
The Prefoliated Structure

4 Future Directions



Motivation Tilings of Rd Manifolds with Bounded Geometry Future Directions

Future Directions

Future Directions

We plan to make a systematic study of ΩM . In particular we aim to...

1 Determine obstructions to the prefoliated structure being a foliation
2 Develop tools for calculating cohomology of manifolds arising from

tilings of ILC
3 Study perturbations of metrics using the hull
4 Develop an index theory for elliptic operators on prefoliated spaces

analogous to the index theory of foliated spaces in [MS88]
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