The Hull of a Manifold with Bounded Geometry

Kyle Hansen

University of California, Santa Barbara Department of Mathematics

May 24, 2022

Outline

1 Motivation

2 Tilings of \mathbb{R}^d

Basic Notions and Examples The Hull of a Tiling Cohomology of the Hull Tilings With ILC

3 Manifolds with Bounded Geometry

A New Metric The Hull of a Manifold of BG Cohomology of the Hull The Prefoliated Structure

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

4 Future Directions

Outline

Motivation

2 Tilings of \mathbb{R}^d

Basic Notions and Examples The Hull of a Tiling Cohomology of the Hull Tilings With ILC

Manifolds with Bounded Geometry

A New Metric The Hull of a Manifold of BG Cohomology of the Hull The Prefoliated Structure

4 Future Directions

Motivation ●○	Tilings of \mathbb{R}^d
Motivation	

Manifolds with Bounded Geometry

Figure: Eight Allotropes of Carbon

Motivation ○●	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions
Motivation			

Figure: Three different kinds of material

Kv	le	Ha	ans	en	(U	CS	B)

ъ

Outline

Motivation

2 Tilings of \mathbb{R}^d

Basic Notions and Examples The Hull of a Tiling Cohomology of the Hull Tilings With ILC

Manifolds with Bounded Geometry

A New Metric The Hull of a Manifold of BG Cohomology of the Hull The Prefoliated Structure

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

4 Future Directions

Manifolds with Bounded Geometry

Future Directions

Tilings of \mathbb{R}^d

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

三日 のへの

• • = • • = •

Image: Image:

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles". A *simple tiling* is one in which

三日 のへの

э

→ ∃ →

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

- A simple tiling is one in which
 - 1 There is a finite collection $\{p_i\}_{i=1}^n$ of *prototiles* such that every tile is a translated copy of some p_i .

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

- A simple tiling is one in which
 - There is a finite collection $\{p_i\}_{i=1}^n$ of *prototiles* such that every tile is a translated copy of some p_i .
 - 2 Each tile is a polytope

Definition

A *tiling* of \mathbb{R}^d is a subdivision into pieces called "tiles".

- A simple tiling is one in which
 - There is a finite collection $\{p_i\}_{i=1}^n$ of *prototiles* such that every tile is a translated copy of some p_i .
 - 2 Each tile is a polytope
 - 3 If two tiles meet, they meet completely in one of their (d-1)-faces.

5 1 SQC

Simple Tilings

Manifolds with Bounded Geometry

Figure: Periodic Tilings

May 24, 2022 8 / 50

크 > - 4 프

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

三日 のへの

Simple Tilings

Figure: A Patch of the Penrose Tiling

Kyle Hansen (UCSB)

Tiling Spaces

May 24, 2022 8 / 50

A B M A B M

三日 のへで

Manifolds with Bounded Geometry

Future Directions

Violating Hypotheses

Figure: A Pinwheel Tiling. Lacks finitely many prototiles up to translation.

Kyle Hansen (UCSB)

May 24, 2022 9 / 50

Manifolds with Bounded Geometry

Future Directions

Violating Hypotheses

Figure: Penrose Chickens. Tiles are not polytopes

Kyle Hansen (UCSB)

불▶ ◀불▶ 불1章 ∽੧. May 24, 2022 9 / 50

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Violating Hypotheses

Figure: A chair tiling. Edges don't meet full-face to full-face

三日 のへで

Motivation	Tilings of ℝ ^d	Manifolds with Bounded Geometry	Future Directions
00	000●000000000000000000000000000000000		0
The Hull of a T	iling		

Definition (Tiling Metric)

Given two tilings, T and T', of \mathbb{R}^d , they are ε -close if up to a translation of distance ε , they agree on a ball of radius ε^{-1} around the origin.

Motivation	Filings of ℝ ^d >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Manifolds with Bounded Geometry	Future Directions
The Hull of a Tiling	g.		

Definition

The *orbit* of a tiling T is its orbit under translation

$$\mathcal{O}(T) := \left\{ T - x \mid x \in \mathbb{R}^d \right\}$$

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
The Hull of a Tili	ng		

Definition

The *orbit* of a tiling T is its orbit under translation

$$\mathcal{O}(T) := \left\{ T - x \mid x \in \mathbb{R}^d \right\}$$

Definition

A *tiling space* is a set of tilings which is closed under translation by \mathbb{R}^d and complete in the tiling metric.

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
The Hull of a Tili	ng		

Definition

The *orbit* of a tiling T is its orbit under translation

$$\mathcal{O}(T) := \left\{ T - x \mid x \in \mathbb{R}^d \right\}$$

Definition

A *tiling space* is a set of tilings which is closed under translation by \mathbb{R}^d and complete in the tiling metric.

Definition (The Hull: Version 1)

The hull Ω_T of a tiling T is the completion of $\mathcal{O}(T)$ in the tiling metric.

Motivation	Tilings of \mathbb{R}^d
00	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Manifolds with Bounded Geometry

Manifolds with Bounded Geometry

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Kyle Hansen (UCSB)

Manifolds with Bounded Geometry

Kyle Hansen (UCSB)

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Kyle Hansen (UCSB)

Manifolds with Bounded Geometry

Future Directions

Kyle Hansen (UCSB)

Manifolds with Bounded Geometry

Kyle Hansen (UCSB)

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Kyle Hansen (UCSB)
Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
00	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Definition (The Hull: Version 2)

Kyle Hansen (UCSB)

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Definition (The Hull: Version 2)

Given a tiling T, for each $n \in \mathbb{N}$, the *n*th Gähler complex Γ_n is the collection of possible instructions for laying n layers of tiles around some tile at the origin consistent with T.

-

三日 のへで

The Hull of a Tiling

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Definition (The Hull: Version 2)

Given a tiling T, for each $n \in \mathbb{N}$, the *n*th Gähler complex Γ_n is the collection of possible instructions for laying n layers of tiles around some tile at the origin consistent with T. Let $f_n : \Gamma_{n+1} \to \Gamma_n$ be the forgetful map. The hull of T is the inverse limit

$$\Omega_{\mathcal{T}} := \varprojlim(\Gamma_n, f_n) = \left(\prod_{n \in \mathbb{N}} \Gamma_n\right) / \sim$$

The Hull of a Tiling

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Definition (The Hull: Version 2)

Given a tiling T, for each $n \in \mathbb{N}$, the *nth Gähler complex* Γ_n is the collection of possible instructions for laying n layers of tiles around some tile at the origin consistent with T. Let $f_n : \Gamma_{n+1} \to \Gamma_n$ be the forgetful map. The hull of T is the inverse limit

$$\Omega_{\mathcal{T}} := \varprojlim(\Gamma_n, f_n) = \left(\prod_{n \in \mathbb{N}} \Gamma_n\right) / \sim$$

Theorem

If T is a simple tiling, Ω_T a compact metric space.

Proof.

The Hull of a Tiling

 $\overline{\mathsf{Tilings}} \, \mathbf{of} \, \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Definition (The Hull: Version 2)

Given a tiling T, for each $n \in \mathbb{N}$, the *nth Gähler complex* Γ_n is the collection of possible instructions for laying n layers of tiles around some tile at the origin consistent with T. Let $f_n : \Gamma_{n+1} \to \Gamma_n$ be the forgetful map. The hull of T is the inverse limit

$$\Omega_{\mathcal{T}} := \varprojlim(\Gamma_n, f_n) = \left(\prod_{n \in \mathbb{N}} \Gamma_n\right) / \sim$$

Theorem

If T is a simple tiling, Ω_T a compact metric space.

Proof.

Each Γ_n is a compact branched manifold, the inverse limit of which is a compact metric space.

Kyle Hansen (UCSB)

Motivation	Tilings of \mathbb{R}^d
The Hull of a	Tiling

Figure: Transition Maps of a Foliated Manifold

三日 のへで

 $\exists \in \mathbb{N}$

・ロト ・回ト ・ヨト

Manifolds with Bounded Geometry

Figure: The Kronecker Foliation of the Torus

Kyle Hansen (UCSB)

э

Image: A math the second se

三日 のへで

Manifolds with Bounded Geometry

Foliation of the Hull

Kyle Hansen (UCSB)

三日 のへの

イロン 不聞と 不同と 不同と

Foliation of the Hull

Definition

Let T be a tiling of \mathbb{R}^d , and let $T' \in \Omega_T$. An ε -transveral of T' is

$$\mathscr{T}_{\mathcal{T}',arepsilon} := \left\{ \mathit{T}'' \in \Omega_{\mathcal{T}} \mid \mathit{B}(0, arepsilon^{-1}) \cap \mathit{T}'' = \mathit{B}(0, arepsilon^{-1}) \cap \mathit{T}'
ight\}$$

 $= \begin{cases} \text{tilings which agree with } \mathcal{T}' \text{ on a ball of} \\ \text{radius } 1/\varepsilon \text{ when basepoints are aligned} \end{cases}$

E SAR

-

F 4 E F 4

Foliation of the Hull

Definition

Let T be a tiling of \mathbb{R}^d , and let $T' \in \Omega_T$. An ε -transveral of T' is

$$\mathscr{T}_{\mathcal{T}',\varepsilon} := \left\{ T'' \in \Omega_{\mathcal{T}} \mid B(0,\varepsilon^{-1}) \cap T'' = B(0,\varepsilon^{-1}) \cap T' \right\}$$

 $= \left\{ \begin{array}{l} \text{tilings which agree with } \mathcal{T}' \text{ on a ball of} \\ \text{radius } 1/\varepsilon \text{ when basepoints are aligned} \end{array} \right\}$

Theorem

The hull of a simple tiling is a foliated space.

Foliation of the Hull

Definition

Let T be a tiling of \mathbb{R}^d , and let $T' \in \Omega_T$. An ε -transveral of T' is

$$\mathscr{T}_{\mathcal{T}',\varepsilon} := \left\{ T'' \in \Omega_{\mathcal{T}} \mid B(0,\varepsilon^{-1}) \cap T'' = B(0,\varepsilon^{-1}) \cap T' \right\}$$

 $= \left\{ \begin{array}{l} \text{tilings which agree with } \mathcal{T}' \text{ on a ball of} \\ \text{radius } 1/\varepsilon \text{ when basepoints are aligned} \end{array} \right\}$

Theorem

The hull of a simple tiling is a foliated space.

Proof.

Because our tilings have FLC, the action of \mathbb{R}^d is locally free. So for any $T'' \in \mathscr{T}_{T',\varepsilon}$, if $v \in \mathbb{R}^d$ with |v| small enough, $T'' - v \notin \mathscr{T}_{T',\varepsilon}$. That is, $\mathscr{T}_{T',\varepsilon}$ is transverse to the action of \mathbb{R}^d .

Motivation	Tilings of \mathbb{R}^d
00	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Kyle Hansen (UCSB)

May 24, 2022 18 / 50

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Kyle Hansen (UCSB)

May 24, 2022 18 / 50

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Kyle Hansen (UCSB)

May 24, 2022 18 / 50

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000

Cohomology of the Hull

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Three Cohomologies of $\Omega_{\mathcal{T}}$

Kyle Hansen (UCSB)

イロト イポト イヨト イヨト

三日 のへで

Manifolds with Bounded Geometry

Future Directions

Three Cohomologies of $\Omega_{\mathcal{T}}$

Čech Cohomology

э

Image: A matrix

三日 のへの

Manifolds with Bounded Geometry

Three Cohomologies of $\Omega_{\mathcal{T}}$

- Čech Cohomology
- 2 Pattern-Equivariant Cohomology

三日 のへで

э

Manifolds with Bounded Geometry

Three Cohomologies of $\Omega_{\mathcal{T}}$

- Čech Cohomology
- 2 Pattern-Equivariant Cohomology
- 8 Foliated Cohomology

-

JI SOCO

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Čech Cohomology $\check{H}^*(\Omega_T)$

→ < ∃ →</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

三日 のへの

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Čech Cohomology $\check{H}^*(\Omega_T)$

Definition $\check{H}^*(X, \mathbb{R}) = \varinjlim_{\mathcal{U}} H^*(N(\mathcal{U}), \mathbb{R})$

Image: A matrix and a matrix

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

PE Cohomology

Manifolds with Bounded Geometry

Cohomology of the Hull

PE Cohomology

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

PE Cohomology

Manifolds with Bounded Geometry

Future Directions

PE Cohomology

Cohomology of the Hull

Manifolds with Bounded Geometry

Future Directions

PE Cohomology

Cohomology of the Hull

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
Cohomology of th	e Hull		

Definition (Strongly Pattern Equivariant)

A smooth function $f : T \to \mathbb{R}$ is *PE with radius* R > 0 if whenever [B(x, R)] = [B(y, R)], then f(x) = f(y).

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions 0
Cohomology of th	e Hull		

Definition (Strongly Pattern Equivariant)

A smooth function $f : T \to \mathbb{R}$ is *PE with radius* R > 0 if whenever [B(x, R)] = [B(y, R)], then f(x) = f(y). A function is *strongly PE* if it is PE for some R > 0.
Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
Cohomology of th	e Hull		

Definition (Strongly Pattern Equivariant)

A smooth function $f : T \to \mathbb{R}$ is *PE with radius* R > 0 if whenever [B(x, R)] = [B(y, R)], then f(x) = f(y). A function is *strongly PE* if it is PE for some R > 0.

Definition (Weakly Pattern Equivariant)

A function $T \to \mathbb{R}$ which is a uniform limit of strongly-PE functions is a *weakly-PE* function.

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions	
Cohomology of the Hull				

A strongly (weakly) PE k-form is a differential form on T

$$\omega = \sum_{|\mathcal{I}|=k} f_{\mathcal{I}} dx^{\mathcal{I}}$$

where each $f_{\mathcal{I}}$ is strongly (weakly) PE.

ELE NOR

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
Cohomology of th	e Hull		

A strongly (weakly) PE k-form is a differential form on T

$$\omega = \sum_{|\mathcal{I}|=k} f_{\mathcal{I}} dx^{\mathcal{I}}$$

where each $f_{\mathcal{I}}$ is strongly (weakly) PE. The collection of such forms is denoted $C_{s-PE}^{k}(\mathcal{T})$ (resp. $C_{w-PE}^{k}(\mathcal{T})$).

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
Cohomology of th	e Hull		

A strongly (weakly) PE k-form is a differential form on T

$$\omega = \sum_{|\mathcal{I}|=k} f_{\mathcal{I}} dx^{\mathcal{I}}$$

where each $f_{\mathcal{I}}$ is strongly (weakly) PE. The collection of such forms is denoted $C_{s-PE}^{k}(\mathcal{T})$ (resp. $C_{w-PE}^{k}(\mathcal{T})$).

Theorem (Definition)

 $C^{\bullet}_{s-PE}(T)$ and $C^{\bullet}_{w-PE}(T)$ are cochain complexes under the exterior derivative, with cohomologies $H^{*}_{s-PE}(T)$ and $H^{*}_{w-PE}(T)$ respectively.

 $\mathsf{Tilings of } \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Foliated Cohomology

Kyle Hansen (UCSB)

イロト イポト イヨト イヨト

三日 のへで

Future Directions

Foliated Cohomology

Definition

Let X be a foliated space. Let

$$C^k_{tlc}(X) = \left\{ \omega : X \to \bigwedge^k T^*X \right\}$$

 ω is leafwise-smooth, and locally constant in the transverse direction

∃ ▶ ∢

EL NOR

Future Directions

Foliated Cohomology

Definition

Let X be a foliated space. Let

 $C_{t/c}^{k}(X) = \left\{ \omega : X \to \bigwedge^{k} T^{*}X \middle| \begin{array}{c} \omega \text{ is leafwise-smooth, and locally} \\ \text{constant in the transverse direction} \end{array} \right\}$

$$C^k_{\tau}(X) = \left\{ \omega : X \to \bigwedge^k T^*X \mid \omega \text{ is transversely continuous}
ight\}$$

JI SAR

Future Directions

Foliated Cohomology

Definition

Let X be a foliated space. Let

 $C_{tlc}^{k}(X) = \left\{ \omega : X \to \bigwedge^{k} T^{*}X \middle| \begin{array}{c} \omega \text{ is leafwise-smooth, and locally} \\ \text{constant in the transverse direction} \end{array} \right\}$

$$C^k_{\tau}(X) = \left\{ \omega : X \to \bigwedge^k T^*X \mid \omega \text{ is transversely continuous}
ight\}$$

Theorem

 $C^{\bullet}_{tlc}(X)$ and $C^{\bullet}_{\tau}(X)$ are cochain complexes with cohomologies $H^*_{tlc}(X)$ and $H^*_{\tau}(X)$ respectively.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ののの

Future Directions

Foliated Cohomology

Definition

Let X be a foliated space. Let

 $C_{tlc}^{k}(X) = \left\{ \omega : X \to \bigwedge^{k} T^{*}X \middle| \begin{array}{c} \omega \text{ is leafwise-smooth, and locally} \\ \text{constant in the transverse direction} \end{array} \right\}$

$$C^k_{\tau}(X) = \left\{ \omega : X \to \bigwedge^k T^*X \mid \omega \text{ is transversely continuous}
ight\}$$

Theorem

 $C^{\bullet}_{tlc}(X)$ and $C^{\bullet}_{\tau}(X)$ are cochain complexes with cohomologies $H^*_{tlc}(X)$ and $H^*_{\tau}(X)$ respectively. $\overline{H^*}_{\tau}(X)$ is the maximal Hausdorff quotient of $H^*_{\tau}(X)$.

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < ○ < ○ </p>

Cohomology of the Hull

 $\mathsf{Tilings of } \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Comparing Cohomologies

・ロト ・聞ト ・ヨト ・ヨト

三日 のへで

Comparing Cohomologies

Lemma

There is a correspondence

 $\{\text{strongly PE functions } T \to \mathbb{R}\} \longleftrightarrow \varinjlim \{\text{smooth functions } \Gamma_n \to \mathbb{R}\}$

(日本)

Comparing Cohomologies

Lemma

There is a correspondence

{strongly PE functions $T \to \mathbb{R}$ } $\longleftrightarrow \lim_{n \to \infty} {smooth functions \Gamma_n \to \mathbb{R}}$

Lemma

If M is a nice enough branched manifold, $\check{H}^*(M, \mathbb{R}) = H^*_{deRham}(M)$.

4 回 > 4 回 > 4 回 > 回 回 の Q の

Future Directions

Comparing Cohomologies

Lemma

There is a correspondence

{strongly PE functions $T \to \mathbb{R}$ } $\longleftrightarrow \lim_{n \to \infty} {smooth functions \Gamma_n \to \mathbb{R}}$

Lemma

If M is a nice enough branched manifold, $\check{H}^*(M, \mathbb{R}) = H^*_{deRham}(M)$.

Lemma

$$\check{H}^*(\Omega_{\mathcal{T}},\mathbb{R})=\check{H}^*(\varprojlim \Gamma_n,\mathbb{R})=\varinjlim \check{H}^*(\Gamma_n,\mathbb{R})$$

Kyle Hansen (UCSB)

▲圖▶ ▲ 필▶ ▲ 필▶ · 포] = · · 이 Q ()

 $\overline{\mathsf{Tilings}} \, \mathsf{of} \, \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])

Let T be a simple tiling. Then

$$\mathbf{1} \ H^*_{s-PE}(T) = \check{H}^*(\Omega_T, \mathbb{R})$$

2
$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$.

 $\overline{\mathsf{Tilings}} \, \mathsf{of} \, \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])

Let T be a simple tiling. Then

$$H^*_{s-PE}(T) = \check{H}^*(\Omega_T, \mathbb{R})$$

2
$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$.

Proof of 1.

 $\overline{\mathsf{Tilings}} \, \mathsf{of} \, \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])

Let T be a simple tiling. Then

2
$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$.

Proof of 1.

$$H^*_{s-PE}(T) = \frac{B^*_{s-PE}(T)}{Z^*_{s-PE}(T)}$$

 $\overline{\mathsf{Tilings}} \, \mathsf{of} \, \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])

Let T be a simple tiling. Then

$$\mathbf{1} \ H^*_{s-PE}(T) = \check{H}^*(\Omega_T, \mathbb{R})$$

2
$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$.

Proof of 1.

$$H_{s-PE}^{*}(T) = \frac{B_{s-PE}^{*}(T)}{Z_{s-PE}^{*}(T)}$$
$$= \frac{\lim_{\to} B^{*}(\Gamma_{n})}{\lim_{\to} Z^{*}(\Gamma_{n})}$$

 $\overline{\mathsf{Tilings}} \, \mathsf{of} \, \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])

Let T be a simple tiling. Then

$$\mathbf{1} \ H^*_{s-PE}(T) = \check{H}^*(\Omega_T, \mathbb{R})$$

2
$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$.

Proof of 1.

$$H_{s-PE}^{*}(T) = \frac{B_{s-PE}^{*}(T)}{Z_{s-PE}^{*}(T)}$$
$$= \frac{\varinjlim B^{*}(\Gamma_{n})}{\varinjlim Z^{*}(\Gamma_{n})}$$
$$= \varinjlim H_{deRham}^{*}(\Gamma_{n})$$

Tilings of \mathbb{R}^d

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])

Let T be a simple tiling. Then

$$\mathbf{1} \ H^*_{s-PE}(T) = \check{H}^*(\Omega_T, \mathbb{R})$$

2
$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$.

Proof of 1.

$$\begin{aligned} H^*_{s-PE}(T) &= \frac{B^*_{s-PE}(T)}{Z^*_{s-PE}(T)} \\ &= \frac{\varinjlim B^*(\Gamma_n)}{\varinjlim Z^*(\Gamma_n)} \\ &= \varinjlim H^*_{deRham}(\Gamma_n) \\ &= \varinjlim \check{H}^*(\Gamma_n, \mathbb{R}) \end{aligned}$$

 $\overline{\mathsf{Tilings}} \, \mathsf{of} \, \mathbb{R}^d$

F

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])

Let T be a simple tiling. Then

2
$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$.

Proof of 1.

$$I_{s-PE}^{*}(T) = \frac{B_{s-PE}^{*}(T)}{Z_{s-PE}^{*}(T)}$$
$$= \frac{\varinjlim B^{*}(\Gamma_{n})}{\varinjlim Z^{*}(\Gamma_{n})}$$
$$= \varinjlim H_{deRham}^{*}(\Gamma_{n})$$
$$= \varinjlim \check{H}^{*}(\Gamma_{n}, \mathbb{R})$$
$$= \check{H}^{*}(\varprojlim \Gamma_{n}, \mathbb{R})$$

Tilings of \mathbb{R}^d

Н

Manifolds with Bounded Geometry

1

Future Directions

Cohomology of the Hull

Theorem ([KP06], [Sad08])

Let T be a simple tiling. Then

$$\mathbf{1} \ H^*_{s-PE}(T) = \check{H}^*(\Omega_T, \mathbb{R})$$

2
$$H^*_{s-PE}(T) = H^*_{tlc}(\Omega_T)$$
 and $H^*_{w-PE}(T) = H^*_{\tau}(\Omega_T)$.

Proof of 1.

$${}^{*}_{s-PE}(T) = \frac{B^{*}_{s-PE}(T)}{Z^{*}_{s-PE}(T)}$$
$$= \frac{\varinjlim B^{*}(\Gamma_{n})}{\varinjlim Z^{*}(\Gamma_{n})}$$
$$= \varinjlim H^{*}_{deRham}(\Gamma_{n})$$
$$= \varinjlim \check{H}^{*}(\Gamma_{n}, \mathbb{R})$$
$$= \check{H}^{*}((\varliminf \Gamma_{n}, \mathbb{R}))$$
$$= \check{H}^{*}(\Omega_{T}, \mathbb{R})$$

Future Directions

Summary of Relationships

Kyle Hansen (UCSB)

May 24, 2022 27 / 50

イロト イポト イヨト イヨト

三日 のへの

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000
Tilings With II C	

A tiling which contains only finitely many types of patches with diameter less than some given R > 0 has finite local complexity (FLC). Otherwise, it has infinite local complexity (ILC).

EL NOR

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000
Tilings With ILC	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣旨 のへで

Motivation	Tilings of \mathbb{R}^d
	000000000000000000000000000000000000000
Tilings With ILC	

Tilings With ILC

Manifolds with Bounded Geometry

Motivation 00	Tilings of \mathbb{R}^d
Tilings With ILC	

Motivation Tiling

Tilings With ILC

 $\overline{\mathsf{Tilings}} \, \mathbf{of} \, \mathbb{R}^d$

Manifolds with Bounded Geometry

Future Directions

Shmuel Weinberger, et al.

Outline

Motivation

2 Tilings of \mathbb{R}^d

Basic Notions and Examples The Hull of a Tiling Cohomology of the Hull Tilings With ILC

3 Manifolds with Bounded Geometry

A New Metric The Hull of a Manifold of BG Cohomology of the Hull The Prefoliated Structure

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆○

4 Future Directions

Smoothing Things Over

Definition

A manifold M^n is said to have *bounded geometry* if there are constants c, C > 0 such that inj(M) > c > 0 and |K(M)| < C.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

Smoothing Things Over

Definition

A manifold M^n is said to have *bounded geometry* if there are constants c, C > 0 such that inj(M) > c > 0 and |K(M)| < C.

Creating AnalogiesTiling TManifold M of BGTiling metricGromov-Hausdroff metric Ω_T Ω_M $H^*_{s-PE}(T)$ $H^*_{s-GE}(M)$ Foliation on Ω_T Pre-foliated structure on Ω_M

EL NOR

1

Image: A matrix and a matrix

Motivation 00	Tilings of \mathbb{R}^d 000000000000000000000000000000000000
Basic Notions	

Future Directions

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000
Basic Notions	

Future Directions

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions
A New Metric			

Definition (From Wikipedia)

"The Hausdorff distance [between two metric subspaces X, Y of an ambient space M] is the longest distance you can be forced to travel by an adversary who chooses a point in one of the two sets, from where you then must travel to the other set."

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry ○○○●○○○○○○○○	Future Directions
A New Metric			

The Gromov-Hausdorff distance between two metric spaces is the infimum

$$d_{GH}(X,Y) := \inf_{f,g} d_H(f(X),g(Y))$$

over isometric embeddings $f, g: X, Y \hookrightarrow M$ into some ambient space M.

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions
The Hull of a Manifold of BG			

Let M be a manifold with bounded geometry and let GHB(D) be Pointed Gromov-Hausdorff space of balls of diameter D. Define

 $\Psi_D: M o GHB(D)$ $m \mapsto B(m, D/2)$
Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions 0
The Hull of a Ma	nifold of BG		

Let M be a manifold with bounded geometry and let GHB(D) be Pointed Gromov-Hausdorff space of balls of diameter D. Define

 $\Psi_D: M o GHB(D)$ $m \mapsto B(m, D/2)$

Theorem

The image $\Psi_D(M) \subseteq GHB(D)$ is precompact.

Proof.

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
The Hull of a Ma	nifold of BG		

Let M be a manifold with bounded geometry and let GHB(D) be Pointed Gromov-Hausdorff space of balls of diameter D. Define

 $\Psi_D: M o GHB(D)$ $m \mapsto B(m, D/2)$

Theorem

The image $\Psi_D(M) \subseteq GHB(D)$ is precompact.

Proof.

Any uniformly totally bounded class of compact metric spaces is pre-compact in GH space. See [BBI01, 264f.] for details.

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions
The Hull of a Ma	nifold of BG		

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions 0
The Hull of a	Manifold of BG		

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions 0
The Hull of a M	anifold of BG		
The Hull of a M	anifold of BG		

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Direction 0
The Hull of a M	anifold of BG		

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions
The Hull of a M	anifold of BG		

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
The Hull of a M	anifold of BG		

Kyle Hansen (UCSB)

May 24, 2022 37 / 50

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
The Hull of a Ma	nifold of BG		

Motivation	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Direction
The Hull of a N	lanifold of BG		

・ロト・日本・日本・日本・日本・ション

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
The Hull of a Ma	nifold of BG		

Let *M* be a manifold with bounded geometry. The hull Ω_M of *M* is the subspace of *GHB* defined by $\Omega_M := \varprojlim \overline{\Psi_D(M)}$.

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions 0	
The Hull of a Manifold of BG				

Let *M* be a manifold with bounded geometry. The hull Ω_M of *M* is the subspace of *GHB* defined by $\Omega_M := \varprojlim \overline{\Psi_D(M)}$.

Example

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions	
The Hull of a Manifold of BG				

Let *M* be a manifold with bounded geometry. The hull Ω_M of *M* is the subspace of *GHB* defined by $\Omega_M := \varprojlim \overline{\Psi_D(M)}$.

Example

1 *M* is homogeneous iff $\Psi_D(M) = \bullet$ for all D > 0.

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions	
The Hull of a Manifold of BG				

Let *M* be a manifold with bounded geometry. The hull Ω_M of *M* is the subspace of *GHB* defined by $\Omega_M := \lim_{M \to \infty} \overline{\Psi_D(M)}$.

Example

- M is homogeneous iff $\Psi_D(M) = \bullet$ for all D > 0.
- **2** If *M* arises from a simple tiling *T*, then $\Omega_M \simeq \Omega_T$.

Motivation	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions	
The Hull of a Manifold of BG				

Let *M* be a manifold with bounded geometry. The hull Ω_M of *M* is the subspace of *GHB* defined by $\Omega_M := \varprojlim \overline{\Psi_D(M)}$.

Example

- M is homogeneous iff $\Psi_D(M) = \bullet$ for all D > 0.
- **2** If *M* arises from a simple tiling *T*, then $\Omega_M \simeq \Omega_T$.
- S If X → M is a covering and M is compact and not too homogeneous, then Ω_X ≃ M. In particular, Ω_M ≃ M.

Future Directions

Almost-Flat \mathbb{R}^n

三日 のへで

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ・

Future Directions

Almost-Flat \mathbb{R}^n

三日 のへで

Future Directions

Almost-Flat \mathbb{R}^n

∃ = ∽ < <> 39 / 50

Universal Cover

三日 のへの

Universal Cover

э

三日 のへの

Universal Cover

Ã

・ロト ・ 日 ト ・ 日 ト ・ 日

三日 のへの

Cohomology of the Hull

Tilings of $\mathbb{R}^{\prime\prime}$

Manifolds with Bounded Geometry

Future Directions

Cohomology of the Hull

Kyle Hansen (UCSB)

イロト イポト イヨト イヨト

三日 のへで

Cohomology of the Hull

Recall

There is a correspondence

{*PE* forms on *T* with radius n} \leftrightarrow {smooth forms on Γ_n }

EL OQO

∃ ► < ∃</p>

< 4 → <

Future Directions

Cohomology of the Hull

Recall

There is a correspondence

{*PE* forms on *T* with radius n} \leftrightarrow {smooth forms on Γ_n }

Definition

A smooth k-form ω on M is Geometry Equivariant with radius D/2 if there is a continuous k-form $\widetilde{\omega}$ on $\overline{\Psi_D(M)}$ such that $\widetilde{\omega}(\Psi_D(p)) = \omega(p)$.

Cohomology of the Hull

Recall

There is a correspondence

{*PE* forms on *T* with radius n} \leftrightarrow {smooth forms on Γ_n }

Definition

A smooth k-form ω on M is Geometry Equivariant with radius D/2 if there is a continuous k-form $\widetilde{\omega}$ on $\overline{\Psi_D(M)}$ such that $\widetilde{\omega}(\Psi_D(p)) = \omega(p)$.

Definition

Let $C_{s-GE}^{k}(M) = \{ \omega \in \Omega^{k}(M) \mid \omega \text{ and } d\omega \text{ are } GE \text{ with some radius } R \}.$ Let $H_{s-GE}^{*}(M)$ be the cohomology of the cochain complex $C_{s-GE}^{\bullet}(M)$.

< □ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < ○ < ○ </p>

Motivation 00	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry	Future Directions	
Cohomology of the Hull				

If *M* is homogeneous, then $C_{s-GE}^{k}(M) = \{\omega \in \Omega^{k}(M) \mid \omega \text{ is constant}\}.$

EL NOR

Motivation 00	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
Cohomology of the Hull			

If *M* is homogeneous, then
$$C_{s-GE}^{k}(M) = \{\omega \in \Omega^{k}(M) \mid \omega \text{ is constant}\}.$$

Example

Let *M* be symmetric of noncompact type, tiled by a Γ -equivariant tiling, where $\Gamma \curvearrowright M$ is geometric. Then $\Omega_M = M/\Gamma$ and $H^*_{s-GE}(M) = H^*(M/\Gamma)$.

EL NOR

Motivation 00	Tilings of \mathbb{R}^d 000000000000000000000000000000000000	Manifolds with Bounded Geometry ○○○○○○○○●○○○	$\underset{O}{Future Directions}$
Cohomology of the Hull			

If *M* is homogeneous, then
$$C_{s-GE}^{k}(M) = \{\omega \in \Omega^{k}(M) \mid \omega \text{ is constant}\}.$$

Example

Let *M* be symmetric of noncompact type, tiled by a Γ -equivariant tiling, where $\Gamma \curvearrowright M$ is geometric. Then $\Omega_M = M/\Gamma$ and $H^*_{s-GE}(M) = H^*(M/\Gamma)$.

Example

If *M* as above has a single impurity, then $H^*_{s-GE}(M) = H^*(M/\Gamma) \oplus \mathbb{R}[n]$.

Proof.

> = = ~ ~ ~

Motivation 00	Tilings of \mathbb{R}^d	Manifolds with Bounded Geometry	Future Directions
Cohomology of the	e Hull		

If *M* is homogeneous, then
$$C_{s-GE}^{k}(M) = \{\omega \in \Omega^{k}(M) \mid \omega \text{ is constant}\}.$$

Example

Let *M* be symmetric of noncompact type, tiled by a Γ -equivariant tiling, where $\Gamma \curvearrowright M$ is geometric. Then $\Omega_M = M/\Gamma$ and $H^*_{s-GE}(M) = H^*(M/\Gamma)$.

Example

If *M* as above has a single impurity, then $H^*_{s-GE}(M) = H^*(M/\Gamma) \oplus \mathbb{R}[n]$.

Proof.

$$C^k_{s-GE}(M) = C^k(M/\Gamma) \oplus C^k_c(M)$$

The Prefoliated Structure

Manifolds with Bounded Geometry

The Prefoliated Structure on the Hull

э

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

三日 のへで

Future Directions

The Prefoliated Structure on the Hull

Definition (Leaves of the Hull) For each $\tilde{p} = (N, p) \in \Omega_M$, define $\Psi : (N, p) \to \Omega_M$ by $\Psi(q) = \lim B(q, D) = (N, q).$

$$\Psi(q) = \lim_{GHB} B(q, D) = (N, q)$$

EL NOR

The Prefoliated Structure on the Hull

Definition (Leaves of the Hull) For each $\tilde{p} = (N, p) \in \Omega_M$, define $\Psi : (N, p) \to \Omega_M$ by $\Psi(q) = \lim_{GHB} B(q, D) = (N, q).$ Note that $\Psi(p) = \tilde{p}$.

The Prefoliated Structure on the Hull

Definition (Leaves of the Hull) For each $\tilde{p} = (N, p) \in \Omega_M$, define $\Psi : (N, p) \to \Omega_M$ by $\Psi(q) = \lim_{GHB} B(q, D) = (N, q).$ Note that $\Psi(p) = \tilde{p}$. The *leaf through* \tilde{p} is the image $\mathcal{L}(\tilde{p}) := \Psi(N, p)$.

The Prefoliated Structure on the Hull

Definition (Leaves of the Hull) For each $\tilde{p} = (N, p) \in \Omega_M$, define $\Psi : (N, p) \to \Omega_M$ by $\Psi(q) = \lim_{GHB} B(q, D) = (N, q).$ Note that $\Psi(p) = \tilde{p}$. The *leaf through* \tilde{p} is the image $\mathcal{L}(\tilde{p}) := \Psi(N, p)$.

The prefoliated structure on Ω_M is the collection $\{\Psi : \tilde{p} \to \mathcal{L}(\tilde{p})\}$.

The Prefoliated Structure

Back to Almost-Flat \mathbb{R}^n

三日 のへで

The Prefoliated Structure

Back to Almost-Flat \mathbb{R}^n

The Prefoliated Structure

Back to Almost-Flat \mathbb{R}^n

三日 のへで

The Prefoliated Structure

Back to Universal Covers

э

三日 のへの

The Prefoliated Structure

Back to Universal Covers

э

三日 のへの

Future Directions

Back to Universal Covers

The Prefoliated Structure

э

三日 のへの

The Prefoliated Structure

Back to Universal Covers

三日 のへで

Image: A Image: A

Image: Image:

The Prefoliated Structure

Back to Universal Covers

三日 のへで

• • = • • =

Image: Image:

The Prefoliated Structure

Back to Universal Covers

三日 のへで

э

Outline

Motivation

2 Tilings of \mathbb{R}^d

Basic Notions and Examples The Hull of a Tiling Cohomology of the Hull Tilings With ILC

Manifolds with Bounded Geometry

A New Metric The Hull of a Manifold of BG Cohomology of the Hull The Prefoliated Structure

4 Future Directions

We plan to make a systematic study of Ω_M . In particular we aim to...

ELE NOR

We plan to make a systematic study of Ω_M . In particular we aim to...

① Determine obstructions to the prefoliated structure being a foliation

ELE NOR

We plan to make a systematic study of Ω_M . In particular we aim to...

- ① Determine obstructions to the prefoliated structure being a foliation
- 2 Develop tools for calculating cohomology of manifolds arising from tilings of ILC

ELE NOR

We plan to make a systematic study of Ω_M . In particular we aim to...

- ① Determine obstructions to the prefoliated structure being a foliation
- Develop tools for calculating cohomology of manifolds arising from tilings of ILC
- 3 Study perturbations of metrics using the hull

5 - A C

We plan to make a systematic study of Ω_M . In particular we aim to...

- ① Determine obstructions to the prefoliated structure being a foliation
- ② Develop tools for calculating cohomology of manifolds arising from tilings of ILC
- 3 Study perturbations of metrics using the hull
- Develop an index theory for elliptic operators on prefoliated spaces analogous to the index theory of foliated spaces in [MS88]

5 1 SQC

References I

- Dmitri Burago, Yuri Burago, and Sergei Ivanov, *A course in metric geometry*, American Mathematical Society, 2001.
 - Jean Bellissard, Semail Ulgen-Yildirim, and Shmuel Weinberger, Disordered solids and the dynamics of bounded geometry (draft), http://math.uchicago.edu/~shmuel/Zurich.pdf, Accessed: 2022-04-21.
- Jonathan Block and Shmuel Winberger, *Aperiodic tilings, positive scalar curvature, and amenability of spaces*, Journal of the AMS **5** (1992), 907–918.
- Johannes Kellendonk and Ian Putnam, *The ruelle-sullivan map for actions of* ℝⁿ, Mathematische Annalen MATH ANN **334** (2006), 693–711.

∃ ► ∃ = \000

References II

- Calvin Moore and Claude Schochet, *Global anlaysis on foliated spaces*, Springer, 1988.
- Peter Petersen, *Riemannian geometry*, Springer, 1998.
- Lorenzo Adlai Sadun, *Topology of tiling spaces*, University Lecture Series, vol. 46, American Mathematical Society, 2008.

5 - A C

THON