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Aperiodic Tilings

Examples

Figure: Periodic Tilings
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Aperiodic Tilings

Examples

Figure: A Patch of a Penrose Tiling
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Aperiodic Tilings

Examples

Figure: The "hat" and "spectre" aperiodic tilings.
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Aperiodic Tilings

Simple Tilings

Definition
A simple tiling of Rd is a subdivision into pieces called "tiles" in which

1 There is a finite collection {pi}Ni=1 of labelled prototiles such that
every tile is a translated copy of some pi .

2 Each tile is a convex polytope.
3 If two tiles meet, they meet completely along their cellular faces.

Running FLC Assumption
All tilings have finite local complexity and geometrically normal; there
are finitely two-tile patches, and intersections are piecewise smooth disks.
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Tiling Spaces

Tiling Spaces

I
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Definition
The hull ΩT of a tiling T is the collection of all tilings which look like T
at arbitrarily large scales around the origin. There is a tiling metric
making ΩT a compact metric space with Rd ↷ ΩT .
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Tiling Spaces

Topology of the Hull
Theorem
• ΩT is the inverse limit of compact branched manifolds [Sadun, 2003]

• ΩT is a fiber bundle over Td . [Sadun and Williams, 2003]
• Ȟ∗(ΩT ;R) ≈ H∗

PE (T ) [Sadun, 2008]

LILI
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Quasi-Crystal Synthesis

FLC to Voronoï Tilings

Theorem ([Frank, 2000])
There is a tiling equivalence: Tiling → Delaunay set → Voronoï Tiling
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Quasi-Crystal Synthesis

Creating FLC Tilings

Theorem ([Meyer, 1972])
Uniform approximate lattices (certain FLC Delaunay sets) come from
cut-and-project schemes.
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Quasi-Crystal Synthesis

The Lie of the Land

CPS FLC Tiling

UAL

FLC Delaunay Set

Simple Tiling

ΩT
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Lattices in Nilpotent Lie Groups

Nilpotent Lie Groups

Definition (Heuristic)

A connected, simply connected, nilpotent d-dimensional lie group G is Rd

with a nilpotent group law, and a left-invariant Riemannian metric.

Example
The real Heisenberg group H is

H =


1 x z

0 1 y
0 0 1

∣∣∣∣∣∣ x , y , z ∈ R

 .

This is diffeomorphic to R3 with group law

(x , y , z) ⋆ (x ′, y ′, z ′) := (x + x ′, y + y ′, z + xy ′ + z ′).
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Lattices in Nilpotent Lie Groups

Uniform Lattices & Maltsev’s Correspondence

Definition
A set of scalars S are structure constants for a basis {X1, . . . ,Xd} of the
lie algebra g if [Xi ,Xj ] =

∑
akXk with each ak ∈ S

Example
{X ,Y ,Z} is a basis for h = lie(H) with nontrivial bracket [X ,Y ] = Z .

Theorem ([Maltsev, 1949])
g has a basis with

structure constants in Q ⇐⇒ G has a lattice
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The Structure of Uniform Approximate Lattices

Uniform Approximate Lattices

Definition (Heuristic)
A uniform approximate lattice Λ ⊆ G is a Delaunay set with finite local
complexity + other "approximate subgroup" criteria.

Question [Björklund and Hartnick, 2018]
Where do UALs come from?

Theorem ([Machado, 2018])
g has a basis with

structure constants in Q ∩ R ⇐⇒ G has a uniform
approximate lattice

Theorem ([Machado, 2018])
Every UAL Λ ⊆ G comes from a cut and project scheme.
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The Structure of Uniform Approximate Lattices

The Lie of the Land in G

CPS FLC Tiling

UAL

FLC Delaunay Set

′′Simple ′′ Tiling?

ΩT
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Delaunay Tilings

Simple Tilings in G

Benefits in Rd absent in G
• Convex polytopes

• Linear faces
• Combinatorially stable

Definition
A simple tiling of G is a subdivision into pieces called "tiles" in which

1 There is a finite collection {pi}Ni=1 of prototiles such that every tile is
a copy of some pi up to (left)-translation by G .

2 Each tile is an "almost-linear" d-simplex algorithmically induced by a
generic Delaunay vertex set.

3 If two tiles meet, they meet completely along their cellular faces.
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Delaunay Tilings

Simple Tilings are Natural

Definition (Heuristic)
A Delaunay set D is generic if there is an algorithm (e.g. akin to
[Boissonnat et al., 2015]) for producing a triangulation of G out of local
patches of D. This triangulation is combinatorially invariant under
sufficiently small local perturbations of D.

Theorem ([H., 2024])
There is a tiling equivalence: Tiling → Delaunay Set → Simple Tiling
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Delaunay Tilings

Proof Sketch (PE Pointillism)
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Theorem (Generalizations to G )
• ΩT is the inverse limit of compact

branched manifolds [Sadun, 2003]
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• Ȟ∗(ΩT ;R) ≈ H∗

PE (T ) [H., 2024]

Kyle Hansen (UCSB) Tiling Spaces are Fiber Bundles June 13, 2024



Tiling Spaces of Rd Approximate Lattices Simple Tilings in Rational Nilpotent Lie Groups

The Structure of Nilpotent Tiling Spaces

Tiling Spaces are Fiber Bundles over Nilmanifolds
Lemma
If T is a tiling of a rational G , there is a tiling TQ whose adjacent vertices
have rational displacement, such that ΩT ≈ ΩTQ are homeomorphic.

Theorem ([H., 2024])
Let T0 be a simple tiling on a connected, simply connected, rational
nilpotent Lie group G . Then ΩT0 is a fiber bundle over a nilmanifold.

Proof.
It is enough to show this for T0 = TQ. Let D be the local displacements of
T0. There is a lattice Λ ⊆ G generated by D. Given T ∈ ΩT0 the
projection G → G/Λ identifies all the vertices of T . This induces a
projection π : ΩT0 → G/Λ with fiber π−1([x ]) the set of tilings with
vertices contained in xΛ.
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The Structure of Nilpotent Tiling Spaces

The Prologue of a Sequel: Open Questions/Directions

• What is the right notion of "simple tilings" under CC metrics? Is there
an analogue of the fiber bundle theorem in the CC case?

• What do tiling spaces look like over nilpotent Lie groups with
structure constants in Q ∩ R?

• When can this rationalization process be made more efficient? Even in
the case of G = Rd this is unsolved, and we know that the current
process is in general sub-optimal.

• Study topology of specific tilings using Ȟ∗(ΩT ;R) ≈ H∗
PE (T ).
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Thank you!

Figure: Fishes and Scales (M.C. Escher, 1959)

Questions?
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