Tiling Spaces which are Fiber Bundles over Nilmanifolds

Kyle Hansen

University of California, Santa Barbara for the 41st Workshop in Geometric Topology, Calvin University

June 13, 2024

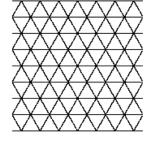
Outline

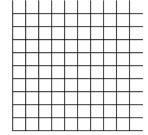
- lacktriangle Tiling Spaces of \mathbb{R}^d Aperiodic Tilings
 Tiling Spaces
 Quasi-Crystal Synthesis
- 2 Approximate Lattices Lattices in Nilpotent Lie Groups The Structure of Uniform Approximate Lattices
- Simple Tilings in Rational Nilpotent Lie Groups Delaunay Tilings The Structure of Nilpotent Tiling Spaces

Outline

- lacktriangle Tiling Spaces of \mathbb{R}^d Aperiodic Tilings
 Tiling Spaces
 Quasi-Crystal Synthesis
- Approximate Lattices Lattices in Nilpotent Lie Groups The Structure of Uniform Approximate Lattices
- Simple Tilings in Rational Nilpotent Lie Groups Delaunay Tilings The Structure of Nilpotent Tiling Spaces

Examples





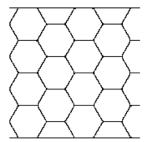


Figure: Periodic Tilings

Examples

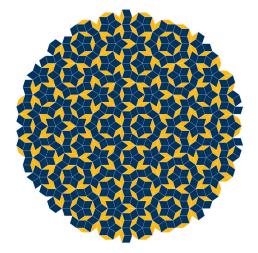


Figure: A Patch of a Penrose Tiling

Examples

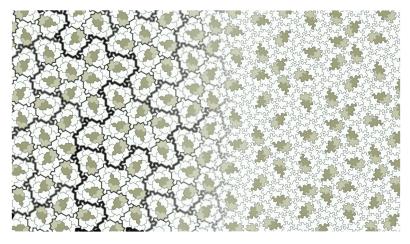


Figure: The "hat" and "spectre" aperiodic tilings.

Aperiodic Tilings

Simple Tilings

Definition

A simple tiling of \mathbb{R}^d is a subdivision into pieces called "tiles" in which

Aperiodic Tilings

Simple Tilings

Definition

A simple tiling of \mathbb{R}^d is a subdivision into pieces called "tiles" in which

1 There is a finite collection $\{p_i\}_{i=1}^N$ of labelled **prototiles** such that every tile is a translated copy of some p_i .

Aperiodic Tilings

Simple Tilings

Definition

A simple tiling of \mathbb{R}^d is a subdivision into pieces called "tiles" in which

- **1** There is a finite collection $\{p_i\}_{i=1}^N$ of labelled **prototiles** such that every tile is a translated copy of some p_i .
- 2 Each tile is a convex polytope.

Simple Tilings

Definition

A simple tiling of \mathbb{R}^d is a subdivision into pieces called "tiles" in which

- **1** There is a finite collection $\{p_i\}_{i=1}^N$ of labelled **prototiles** such that every tile is a translated copy of some p_i .
- 2 Each tile is a convex polytope.
- 3 If two tiles meet, they meet completely along their cellular faces.

Simple Tilings

Definition

A simple tiling of \mathbb{R}^d is a subdivision into pieces called "tiles" in which

- **1** There is a finite collection $\{p_i\}_{i=1}^N$ of labelled **prototiles** such that every tile is a translated copy of some p_i .
- 2 Each tile is a convex polytope.
- If two tiles meet, they meet completely along their cellular faces.

Running FLC Assumption

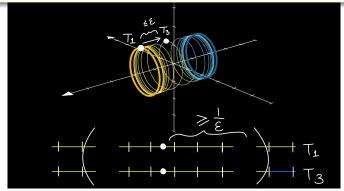
All tilings have finite local complexity and geometrically normal; there are finitely two-tile patches, and intersections are piecewise smooth disks.

Tiling Spaces of \mathbb{R}^d

Tiling Spaces

Definition

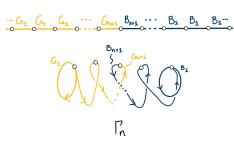
The **hull** Ω_T of a tiling T is the collection of all tilings which look like T at arbitrarily large scales around the origin. There is a tiling metric making Ω_T a compact metric space with $\mathbb{R}^d \curvearrowright \Omega_T$.

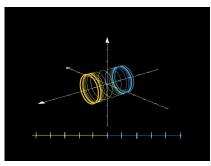


Topology of the Hull

Theorem,

• Ω_T is the inverse limit of compact branched manifolds [Sadun, 2003]

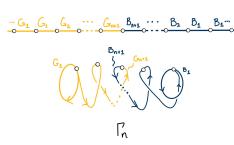


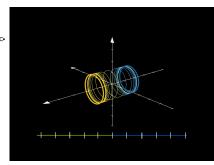


Topology of the Hull

Theorem

- Ω_T is the inverse limit of compact branched manifolds [Sadun, 2003]
- Ω_T is a fiber bundle over \mathbb{T}^d . [Sadun and Williams, 2003]

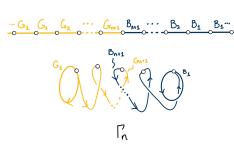


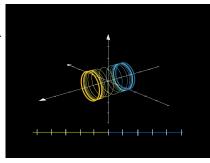


Topology of the Hull

Theorem

- Ω_T is the inverse limit of compact branched manifolds [Sadun, 2003]
- Ω_T is a fiber bundle over \mathbb{T}^d . [Sadun and Williams, 2003]
- $\check{H}^*(\Omega_T; \mathbb{R}) \approx H^*_{PE}(T)$ [Sadun, 2008]





FLC to Voronoï Tilings

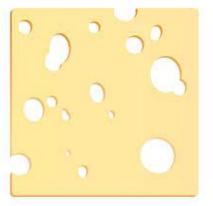
Theorem ([Frank, 2000])

There is a tiling equivalence: Tiling \rightarrow Delaunay set \rightarrow Voronoi Tiling

FLC to Voronoï Tilings

Theorem ([Frank, 2000])

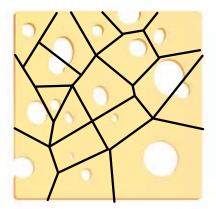
There is a tiling equivalence: Tiling \rightarrow Delaunay set \rightarrow Voronoï Tiling



FLC to Voronoï Tilings

Theorem ([Frank, 2000])

There is a tiling equivalence: Tiling \rightarrow Delaunay set \rightarrow Voronoï Tiling



Creating FLC Tilings

Theorem ([Meyer, 1972])

Uniform approximate lattices (certain FLC Delaunay sets) come from cut-and-project schemes.

Creating FLC Tilings

Theorem ([Meyer, 1972])

Uniform approximate lattices (certain FLC Delaunay sets) come from cut-and-project schemes.

Creating FLC Tilings

Theorem ([Meyer, 1972])

Uniform approximate lattices (certain FLC Delaunay sets) come from **cut-and-project schemes**.

Creating FLC Tilings

Theorem ([Meyer, 1972])

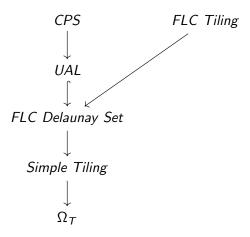
Uniform approximate lattices (certain FLC Delaunay sets) come from **cut-and-project schemes**.

Creating FLC Tilings

Theorem ([Meyer, 1972])

Uniform approximate lattices (certain FLC Delaunay sets) come from **cut-and-project schemes**.

The Lie of the Land



Outline

- lacktriangle Tiling Spaces of \mathbb{R}^d Aperiodic Tilings
 Tiling Spaces
 Quasi-Crystal Synthesis
- Approximate Lattices Lattices in Nilpotent Lie Groups The Structure of Uniform Approximate Lattices
- Simple Tilings in Rational Nilpotent Lie Groups Delaunay Tilings The Structure of Nilpotent Tiling Spaces

Lattices in Nilpotent Lie Groups

Nilpotent Lie Groups

Definition (Heuristic)

A connected, simply connected, nilpotent d-dimensional lie group G is \mathbb{R}^d with a nilpotent group law, and a left-invariant Riemannian metric.

Nilpotent Lie Groups

Definition (Heuristic)

A connected, simply connected, nilpotent d-dimensional lie group G is \mathbb{R}^d with a nilpotent group law, and a left-invariant Riemannian metric.

Example

The real Heisenberg group H is

$$\mathbb{H}=\left\{\left.egin{pmatrix}1&x&z\\0&1&y\\0&0&1\end{pmatrix}
ight|x,y,z\in\mathbb{R}
ight\}.$$

This is diffeomorphic to \mathbb{R}^3 with group law

$$(x, y, z) \star (x', y', z') := (x + x', y + y', z + xy' + z').$$

Nilpotent Lie Groups

Definition (Heuristic)

A connected, simply connected, nilpotent d-dimensional lie group G is \mathbb{R}^d with a nilpotent group law, and a left-invariant Riemannian metric.

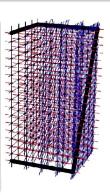
Example

The real Heisenberg group $\mathbb H$ is

$$\mathbb{H}=\left\{\left.egin{pmatrix}1&x&z\\0&1&y\\0&0&1\end{pmatrix}
ight|x,y,z\in\mathbb{R}
ight\}.$$

This is diffeomorphic to \mathbb{R}^3 with group law

$$(x, y, z) \star (x', y', z') := (x + x', y + y', z + xy' + z').$$



Lattices in Nilpotent Lie Groups

Uniform Lattices & Maltsev's Correspondence

Definition

A set of scalars S are **structure constants** for a basis $\{X_1, \ldots, X_d\}$ of the lie algebra \mathfrak{g} if $[X_i, X_j] = \sum a_k X_k$ with each $a_k \in S$

Lattices in Nilpotent Lie Groups

Uniform Lattices & Maltsev's Correspondence

Definition

A set of scalars S are **structure constants** for a basis $\{X_1, \ldots, X_d\}$ of the lie algebra \mathfrak{g} if $[X_i, X_j] = \sum a_k X_k$ with each $a_k \in S$

Example

 $\{X,Y,Z\}$ is a basis for $\mathfrak{h}=\mathfrak{lie}(\mathbb{H})$ with nontrivial bracket [X,Y]=Z.

Uniform Lattices & Maltsev's Correspondence

Definition

A set of scalars S are **structure constants** for a basis $\{X_1, \ldots, X_d\}$ of the lie algebra \mathfrak{g} if $[X_i, X_j] = \sum a_k X_k$ with each $a_k \in S$

Example

 $\{X,Y,Z\}$ is a basis for $\mathfrak{h}=\mathfrak{lie}(\mathbb{H})$ with nontrivial bracket [X,Y]=Z.

Theorem ([Maltsev, 1949])

 \mathfrak{g} has a basis with structure constants in \mathbb{Q}

G has a lattice

The Structure of Uniform Approximate Lattices

Uniform Approximate Lattices

Definition (Heuristic)

A uniform approximate lattice $\Lambda \subseteq G$ is a Delaunay set with finite local complexity + other "approximate subgroup" criteria.

The Structure of Uniform Approximate Lattices

Uniform Approximate Lattices

Definition (Heuristic)

A uniform approximate lattice $\Lambda \subseteq G$ is a Delaunay set with finite local complexity + other "approximate subgroup" criteria.

Question [Björklund and Hartnick, 2018]

Where do UALs come from?

Uniform Approximate Lattices

Definition (Heuristic)

A uniform approximate lattice $\Lambda \subseteq G$ is a Delaunay set with finite local complexity + other "approximate subgroup" criteria.

Question [Björklund and Hartnick, 2018]

Where do UALs come from?

Theorem ([Machado, 2018])

 \mathfrak{g} has a basis with structure constants in $\overline{\mathbb{Q}} \cap \mathbb{R}$

G has a uniform approximate lattice

The Structure of Uniform Approximate Lattices

Uniform Approximate Lattices

Definition (Heuristic)

A uniform approximate lattice $\Lambda \subseteq G$ is a Delaunay set with finite local complexity + other "approximate subgroup" criteria.

Question [Björklund and Hartnick, 2018]

Where do UALs come from?

Theorem ([Machado, 2018])

 \mathfrak{g} has a basis with structure constants in $\overline{\mathbb{Q}} \cap \mathbb{R}$

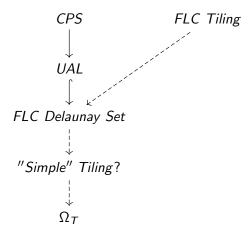
G has a uniform approximate lattice

Theorem ([Machado, 2018])

Every UAL $\Lambda \subseteq G$ comes from a cut and project scheme.

The Structure of Uniform Approximate Lattices

The Lie of the Land in G



Outline

- lacktriangle Tiling Spaces of \mathbb{R}^d Aperiodic Tilings
 Tiling Spaces
 Quasi-Crystal Synthesis
- 2 Approximate Lattices Lattices in Nilpotent Lie Groups The Structure of Uniform Approximate Lattices
- Simple Tilings in Rational Nilpotent Lie Groups Delaunay Tilings The Structure of Nilpotent Tiling Spaces

Benefits in \mathbb{R}^d absent in G

Convex polytopes

Benefits in \mathbb{R}^d absent in G

- Convex polytopes
- Linear faces

Simple Tilings in *G*

Benefits in \mathbb{R}^d absent in G

- Convex polytopes
- Linear faces
- Combinatorially stable

Benefits in \mathbb{R}^d absent in G

- Convex polytopes
- Linear faces
- Combinatorially stable

Definition

A simple tiling of G is a subdivision into pieces called "tiles" in which

1 There is a finite collection $\{p_i\}_{i=1}^N$ of **prototiles** such that every tile is a copy of some p_i up to (left)-translation by G.

Benefits in \mathbb{R}^d absent in G

- Convex polytopes
- Linear faces
- Combinatorially stable

Definition

A simple tiling of G is a subdivision into pieces called "tiles" in which

- **1** There is a finite collection $\{p_i\}_{i=1}^N$ of **prototiles** such that every tile is a copy of some p_i up to (left)-translation by G.
- **2** Each tile is an "almost-linear" *d*-simplex algorithmically induced by a generic Delaunay vertex set.

Benefits in \mathbb{R}^d absent in G

- Convex polytopes
- Linear faces
- Combinatorially stable

Definition

A simple tiling of G is a subdivision into pieces called "tiles" in which

- 1 There is a finite collection $\{p_i\}_{i=1}^N$ of **prototiles** such that every tile is a copy of some p_i up to (left)-translation by G.
- 2 Each tile is an "almost-linear" *d*-simplex algorithmically induced by a generic Delaunay vertex set.
- 3 If two tiles meet, they meet completely along their cellular faces.

Approximate Lattices

Simple Tilings are Natural

Definition (Heuristic)

A Delaunay set D is *generic* if there is an algorithm (e.g. akin to [Boissonnat et al., 2015]) for producing a triangulation of G out of local patches of D. This triangulation is combinatorially invariant under sufficiently small local perturbations of D.

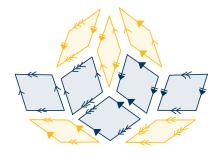
Simple Tilings are Natural

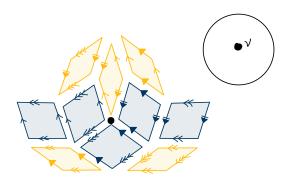
Definition (Heuristic)

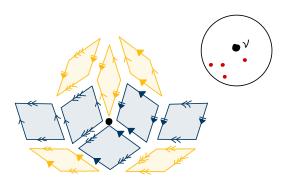
A Delaunay set D is *generic* if there is an algorithm (e.g. akin to [Boissonnat et al., 2015]) for producing a triangulation of G out of local patches of D. This triangulation is combinatorially invariant under sufficiently small local perturbations of D.

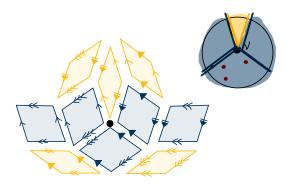
Theorem ([H., 2024])

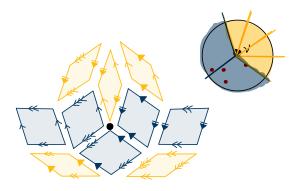
There is a tiling equivalence: Tiling \rightarrow Delaunay Set \rightarrow Simple Tiling

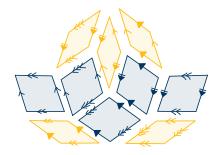


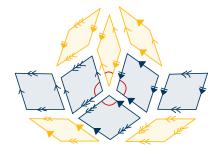


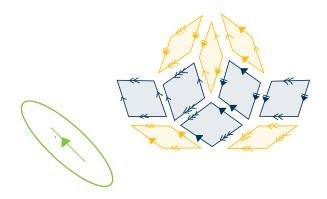


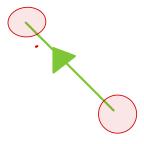


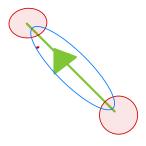


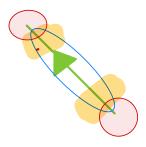


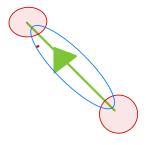


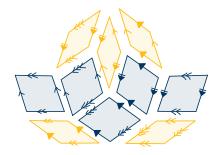


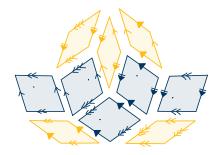


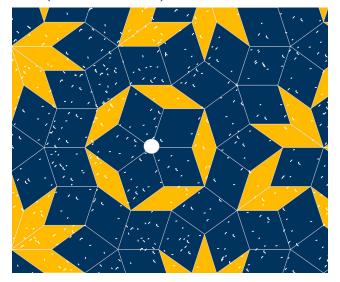


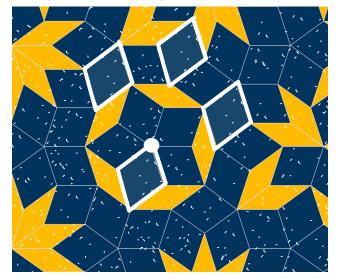




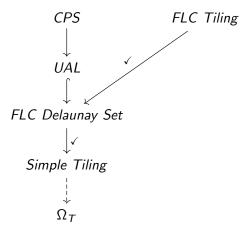




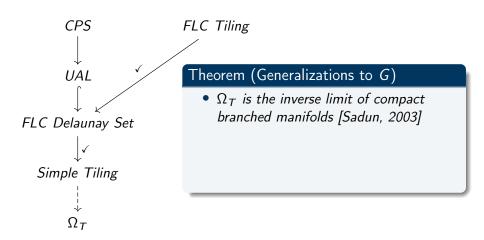




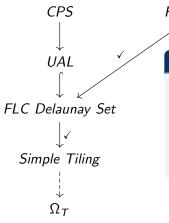
Applications



Applications



Applications

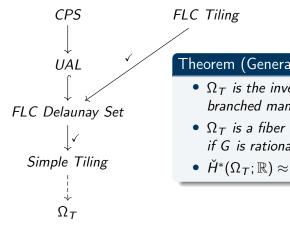


FLC Tiling

Theorem (Generalizations to G)

- Ω_T is the inverse limit of compact branched manifolds [Sadun, 2003]
- Ω_T is a fiber bundle over a nilmanifold if G is rational [H., 2024]

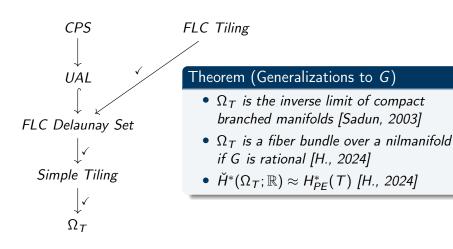
Applications



Theorem (Generalizations to G)

- Ω_T is the inverse limit of compact branched manifolds [Sadun, 2003]
- Ω_T is a fiber bundle over a nilmanifold if G is rational [H., 2024]
- $\check{H}^*(\Omega_T; \mathbb{R}) \approx H^*_{PF}(T)$ [H., 2024]

Applications



Tiling Spaces are Fiber Bundles over Nilmanifolds

Lemma

If T is a tiling of a rational G, there is a tiling $T_{\mathbb{Q}}$ whose adjacent vertices have rational displacement, such that $\Omega_T \approx \Omega_{T_{\mathbb{Q}}}$ are homeomorphic.

Approximate Lattices

The Structure of Nilpotent Tiling Spaces

Tiling Spaces are Fiber Bundles over Nilmanifolds

Lemma

If T is a tiling of a rational G, there is a tiling $T_{\mathbb{Q}}$ whose adjacent vertices have rational displacement, such that $\Omega_T \approx \Omega_{T_{\mathbb{Q}}}$ are homeomorphic.

Theorem ([H., 2024])

Let T_0 be a simple tiling on a connected, simply connected, rational nilpotent Lie group G. Then Ω_{T_0} is a fiber bundle over a nilmanifold.

Proof.

Tiling Spaces are Fiber Bundles over Nilmanifolds

Lemma

If T is a tiling of a rational G, there is a tiling $T_{\mathbb{Q}}$ whose adjacent vertices have rational displacement, such that $\Omega_T \approx \Omega_{T_{\mathbb{Q}}}$ are homeomorphic.

Theorem ([H., 2024])

Let T_0 be a simple tiling on a connected, simply connected, rational nilpotent Lie group G. Then Ω_{T_0} is a fiber bundle over a nilmanifold.

Proof.

It is enough to show this for $T_0 = T_{\mathbb{Q}}$.

Tiling Spaces are Fiber Bundles over Nilmanifolds

Lemma

If T is a tiling of a rational G, there is a tiling $T_{\mathbb{Q}}$ whose adjacent vertices have rational displacement, such that $\Omega_T \approx \Omega_{T_{\mathbb{Q}}}$ are homeomorphic.

Theorem ([H., 2024])

Let T_0 be a simple tiling on a connected, simply connected, rational nilpotent Lie group G. Then Ω_{T_0} is a fiber bundle over a nilmanifold.

Proof.

It is enough to show this for $T_0=T_{\mathbb{Q}}$. Let \mathcal{D} be the local displacements of T_0 . There is a lattice $\Lambda\subseteq G$ generated by \mathcal{D} .

Tiling Spaces are Fiber Bundles over Nilmanifolds

Lemma

If T is a tiling of a rational G, there is a tiling $T_{\mathbb{Q}}$ whose adjacent vertices have rational displacement, such that $\Omega_T \approx \Omega_{T_{\mathbb{Q}}}$ are homeomorphic.

Theorem ([H., 2024])

Let T_0 be a simple tiling on a connected, simply connected, rational nilpotent Lie group G. Then Ω_{T_0} is a fiber bundle over a nilmanifold.

Proof.

It is enough to show this for $T_0=T_{\mathbb Q}$. Let $\mathcal D$ be the local displacements of T_0 . There is a lattice $\Lambda\subseteq G$ generated by $\mathcal D$. Given $T\in\Omega_{T_0}$ the projection $G\to G/\Lambda$ identifies all the vertices of T.

Tiling Spaces are Fiber Bundles over Nilmanifolds

Lemma

If T is a tiling of a rational G, there is a tiling $T_{\mathbb{Q}}$ whose adjacent vertices have rational displacement, such that $\Omega_T \approx \Omega_{T_{\mathbb{Q}}}$ are homeomorphic.

Theorem ([H., 2024])

Let T_0 be a simple tiling on a connected, simply connected, rational nilpotent Lie group G. Then Ω_{T_0} is a fiber bundle over a nilmanifold.

Proof.

It is enough to show this for $T_0=T_{\mathbb Q}$. Let $\mathcal D$ be the local displacements of T_0 . There is a lattice $\Lambda\subseteq G$ generated by $\mathcal D$. Given $T\in\Omega_{T_0}$ the projection $G\to G/\Lambda$ identifies all the vertices of T. This induces a projection $\pi:\Omega_{T_0}\to G/\Lambda$ with fiber $\pi^{-1}([x])$ the set of tilings with vertices contained in $x\Lambda$.

The Prologue of a Sequel: Open Questions/Directions

 What is the right notion of "simple tilings" under CC metrics? Is there an analogue of the fiber bundle theorem in the CC case?

- What is the right notion of "simple tilings" under CC metrics? Is there an analogue of the fiber bundle theorem in the CC case?
- What do tiling spaces look like over nilpotent Lie groups with structure constants in $\overline{\mathbb{Q}} \cap \mathbb{R}$?

- What is the right notion of "simple tilings" under CC metrics? Is there an analogue of the fiber bundle theorem in the CC case?
- What do tiling spaces look like over nilpotent Lie groups with structure constants in $\overline{\mathbb{Q}} \cap \mathbb{R}$?
- When can this rationalization process be made more efficient? Even in the case of $\mathbb{G}=\mathbb{R}^d$ this is unsolved, and we know that the current process is in general sub-optimal.

- What is the right notion of "simple tilings" under CC metrics? Is there an analogue of the fiber bundle theorem in the CC case?
- What do tiling spaces look like over nilpotent Lie groups with structure constants in $\overline{\mathbb{Q}} \cap \mathbb{R}$?
- When can this rationalization process be made more efficient? Even in the case of $\mathbb{G}=\mathbb{R}^d$ this is unsolved, and we know that the current process is in general sub-optimal.
- Study topology of specific tilings using $\check{H}^*(\Omega_T; \mathbb{R}) \approx H^*_{PF}(T)$.

References I

Björklund, M. and Hartnick, T. (2018). Approximate lattices.

Boissonnat, J.-D., Dyer, R., and Ghosh, A. (2015). Delaunay triangulation of manifolds.

Frank, N. (2000).

Towards a characterization of self-similar tilings in terms of derived voronoï tessellations

Geometriae Dedicata, 79(3):239-265.

Machado, S. (2018).

Approximate lattices and meyer sets in nilpotent lie groups.

Maltsev, A. I. (1949).

On a class of homogeneous spaces.

Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 13(1):9-32.

References II

Meyer, Y. (1972).

Algebraic Numbers and Harmonic Analysis, volume 2. Flsevier

Sadun, L. (2003).

Tiling spaces are inverse limits. Journal of Mathematical Physics, 44(11):5410–5414.

Sadun, L. and Williams, R. F. (2003).

Tiling spaces are cantor set fiber bundles.

Ergodic Theory and Dynamical Systems, 23(1):307–316.

Sadun, L. A. (2008).

Topology of tiling spaces, volume 46.

American Mathematical Soc.

Thank you!

Figure: Fishes and Scales (M.C. Escher, 1959)

Questions?