201B Real Analysis Assignment 8

- 1. Use $i_{can}: X \to X^{**}$ to explain the difference between the w* convergence of (ϕ_j) in X^* and the *w* convergence of (ϕ_j) as elements of $Y = X^*$.
- 2. Let (ϕ_j) be a sequence in X^* . Suppose that $\langle \phi_j, x \rangle$ converges for any $x \in X$. Prove that there exists $\phi \in X^*$ such that $\phi_j \xrightarrow{w^*} \phi$. (In fancy terminology " X^* is always w^* -complete".)

Formulate the analogous statement for the *w*-convergence for a sequence (x_j) in X. Try to extend your proof from the first part to this situation. When does the proof collapse? (The statement actually does not hold. Some assumptions are needed for X to be *w*-complete.)

3. Prove that a sequence (ϕ_j) in X^* converges w^* if and only if it is bounded and there exists an everywhere dense set E, such that $\langle \phi_j, u \rangle$ converges for all $u \in E$.

Formulate and prove the similar criterion for $x_j \xrightarrow{w} x, j \to \infty, x_j, x \in X$.

- 4. Prove that $\varepsilon/(\pi(x^2+\varepsilon^2)) d\lambda^1(x) \xrightarrow{w*} \delta, \varepsilon \to 0$, as measures on [-1,1].
- 5. Let I = [-1, 1]. Let $C^{1}(I)$ denote the space of continuously differentiable on (-1, 1) functions f, such that $f, f' \in C(I)$. Let $\phi_n = \sin(\pi nx) d\lambda^1$. Prove that

$$\int_{I} g \, d\phi_n \to 0, n \to \infty, \quad \forall g \in C^1(I).$$

(Hint: you can integrate by parts.) Prove that $\phi_n \to 0$ weakly^{*} as measures. (Hint: use the criterion for the weak^{*} convergence proved above and the density of C^{1} in C.)

6. Prove that $\sin(\pi nx) \to 0$, $n \to \infty$, weakly* in $L^{\infty}(I)$, and weakly in $L^{p}(I)$, 1 . (Accept that <math>C(I) is dense in $L^{p}(I)$, $1 \le p < \infty$.)