
Real Analysis, course outline
Denis Labutin

1 Measure theory I

1. Sigma algebras. Let A be a collection of subsets of some fixed set Ω .
It is called a σ -algebra with the unit element Ω if

(a) ∅,Ω ∈ A ;

(b) E ∈ A =⇒ cE ∈ A ;

(c) Ej ∈ A , j = 1, 2, . . . =⇒
⋃
j

Ej ∈ A .

Prove that a σ -algebra A is closed under countable number of the set
theoretic operations ( ∩ , ∪ , \ , (·)c ).

2. For a sequence of sets Ej define

lim sup
j→∞

Ej = {points which belong to infinitely many Ej},

lim inf
j→∞

Ej = {points which belong to all but finitely many Ej}.

Thus lim supEj ⊃ lim inf Ej . If lim supEj = lim inf Ej = E , then we
write

lim
j→∞

Ej = E.

(a) Give an example of a sequence {Ej} for which the inclusion is strict.

(b) Show that

lim sup
j

Ej =
∞⋂
j=1

 ∞⋃
k=j

Ek

 ,

lim inf
j

Ej =
∞⋃
j=1

 ∞⋂
k=j

Ek.


(c) Show that if all Ej are elements of a σ -algebra A , then

lim sup
j

Ej , lim inf
j

Ej ∈ A.

(d) Suppose that E1 ⊃ E2 ⊃ · · · . Prove that

lim sup
j

Ej = lim inf
j

Ej =
⋂
j

Ej .
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(e) Find (and prove) the formula for lim supEj , lim inf Ej in the case
E1 ⊂ E2 ⊂ · · · .

3. Prove that the following collections of sets are σ -algebras.

(a) Trivial σ -algebra {∅,Ω} .
(b) Bulean σ -algebra 2Ω = { all subsets of Ω } .
(c) For any E ⊂ Ω the collection {E, cE, ∅,Ω} (It is called the σ -

algebra generated by the set E ).
(d) Let D = {D1, D2, . . .} is a countable (disjoint) partition of Ω :

Ω =
⋃
j

Dj , Di ∩Dj = ∅ if i 6= j.

The family of all at most countable unions of elements of D (includ-
ing ∅ ) is a σ -algebra.

(e) The family of all E ⊂ Ω such that either E is at most countable or
cE is at most countable.

4. New σ -algebras from old. Prove the following statements.

(a) Give an example showing that the union of two σ -algebras with the
same unit element is not necessarily a σ -algebra.

(b) If (A1,Ω) and (A2,Ω) are σ -algebras then A1 ∩ A2 is also a σ -
algebra with the same unit element Ω .

(c) Similarly, if (Aa,Ω) is a σ -algebra for any a ∈ A , then
⋂
a∈A

Aa is

also a σ -algebra with the same unit element Ω .
(d) If (A,Ω) is a σ -algebra, and E ⊂ Ω , then

A ∩ E = {A ∩ E : A ∈ A}

is a σ -algebra with the unit E ∩ Ω = E .
(e) If (A,Ω) is a σ -algebra, and Ξ is any fixed set, then

A× Ξ = {A× Ξ: A ∈ A}

is a σ -algebra with the unit Ω × Ξ . One should think of Ξ as a
group of dummy variables.

5. Property (b) is the basis for the following important construction.

Theorem 1 Let C be any collection of subsets of Ω . Then there exists
one and only one σ -algebra (A,Ω) such that:
(i) C ⊂ A .

(ii) For any σ -algebra (Ã,Ω) containing C we have Ã ⊃ A .
It is called the σ -algebra generated by C and is denoted by σ(C) .
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For the proof just define

σ(C) def=
⋂

all σ−algebras
(Ω,Aα) : C⊂Aα

Aα.

Hence, the more careful notation should be σΩ(C) .

6. The definition of the σ -algebra generated by a collection of sets is a
"somewhat inaccessible concept". Can we write a formula for its elements
in terms of the elements of the initial collection?

(a) For the collection consisting of a single E ⊂ Ω find σE(E) , σΩ(E) ,
and σ({E,Ec}) .

(b) For a disjoint countable partition D of Ω ,

Ω =
⋃
j

Dj , Di ∩Dj = ∅ if i 6= j,

find σ(D) .
(c) Prove that σ(σ(C)) = σ(C) for any collection C of subsets.
(d) Prove that

σ(C) = σ ({F : F = Ec, E ∈ C})

= σ

F : F =
⋃
j

Ej , Ej ∈ C


 .

In general, it is not possible to give a simple formula or a simple con-
structive description of σ(C) . For example, if we take all countable inter-
sections and unions of open and closed interval in R1 we obtain only a
proper subset of B1 . An equivalent descriptive definition of σ(C) can be
given using transfinite induction.

7. If (A1,Ω1) and (A2,Ω2) are σ -algebras, define

A1 ×A2 = {E = E1 × E2 : Ej ∈ Aj} ,

and prove that A1 ×A2 is not necessarily a σ -algebra. Set

A1 ⊗A2 = σ (A1 ×A2) .

The σ -algebra A1 ⊗A2 with the unit element Ω1 × Ω2 is called tensor
product of A1 and A2 .

8. Define the important Borel σ -algebra by writing

Bn = B(Rn) = {σ − algebra generated by open sets}
= {σ − algebra generated by closed sets}
= {σ − algebra generated by open cubes}.
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For a general metric (or even topological) space X its Borel σ -algebra is

B(X) def= {σ − algebra generated by open subsets of X}.

9. The product structure of Rn leads to a product structure of Bn .

Theorem 2
B(R2) = B(R1)⊗ B(R1). (1.1)

Proof. 1. We prover the inclusion B2 ⊂ B1 ⊗ B1. Notice that by the
definition of the tensor product, the inclusion

(a, b)× (c, d) ∈ B1 ⊗ B1

holds for any simple open rectangle. But B2 is the minimal σ -algebra
containing such simple rectangles.
To prove the inclusion B2 ⊃ B1 ⊗ B1 we need to show that X × Y ∈ B2

for all X,Y ∈ B1 .
2. For our X,Y ∈ B1 we notice that

X × Y = (X ×Ry) ∩ (Rx × Y ) .

Hence, to establish the desired statement (1.1) it is sufficient to show that

X ×Ry,Rx × Y ∈ B2.

Let us prove the inclusion for the first set. Denote by I the collection of
all intervals in Rx . Then

X ×Ry ∈ B1 ×Ry = σ(I)×Ry.

At the same time, directly from the definitions,

σ(I ×Ry) ⊂ B2.

Indeed, the σ -algebra in the left hand side is generated by the open
rectangles of the form (a, b)× (−∞,+∞) . Hence we just need to establsh
that

σ(I)×Ry ⊂ σ(I ×Ry). (1.2)

3. Inclusion (1.2) is established using the so-called principle of good
sets. This is the name for a certain type of arguments frequently used in
measure theory. Define the collection of good sets to be

E def= {E ⊂ R : E ∈ σ(I) and E ×Ry ∈ σ(I ×Ry)} .

It is easy to check that E is a σ -algebra with the unit element Rx .
Indeed, by the definition

E ×Ry = σ(I)×Ry ∩ σ(I ×Ry),
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and the intersection of σ -algebras is a σ -algebra.
To prove (1.2) we just need to show that E = σ(I) . To verify this equality
observe from the definitions that

I ⊂ E ⊂ σ(I).

Therefore
σ(E) = σ(I).

Since E is a σ -algebra
σ(E) = E .

Thus (1.2) is proved. �

Prove that in fact we have σ(I)×Ry = σ(I ×Ry) in (1.2).

10. Maps and σ -algebras. Let f : D → Ω , and let (A,Ω) be a σ -algebra.
The full preimage

f−1(A) def=
{
f−1(E) : E ∈ A

}
under f is a σ -algebra. (What is its unit element? Prove the statement.)
Let (A0, D) be a σ -algebra. The direct image

f(A0) = {f(E) : E ∈ A0}

is not always a σ -algebra. (Give an example.)
Define the push forward f#(A0) ,

f#(A0) = {S ⊂ Ω: f−1(S) ∈ A0}.

Is it a σ -algebra? (Prove the statement, or give a counterexample.)

11. A function f : Ω→ R1 is A -measurable if f−1(B1) ⊂ A . That is,

f−1(E) ∈ A ∀E ∈ B1.

Equivalently, the full preimage of the σ -algebra B(R) under f is a
subalgebra of A .
Prove that a function f is measurable if and only if

f−1((−∞, t)) ∈ A ∀t.

The last condition is easier to check in practice. For the proof of the "if"
part one can argue using the principle of good sets. The collection of the
good sets in this case is

E =
{
E ⊂ R : E ∈ B1 and f−1(E) ∈ A

}
= B1 ∩ f#(A).

Then notice that E is a σ -algebra, E ⊂ B1 , and that (−∞, t) ∈ E for
any t . The statement now follows from the properties of the generating
operation σ .
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12. Similarly a complex valued function F : Ω→ C is A -measurable if

f−1(E) ∈ A ∀E ∈ B2.

Equivalently, F−1(B2) ⊂ A (the full preimage of the σ -algebra B(C) =
B2 under F is a subalgebra of A ).

Prove that such F is measurable if and only if f = Re(F ) and g =
Im(F ) are real valued measurable functions.

13. We will need measurable functions with the values in R ∪ {+∞} , or
R ∪ {+∞} ∪ {−∞} , or C ∪ {∞} . Hence we need to define Borel σ -
algebras on these sets.

14. One point compactification of R or C is defined to be the set

R = R ∪ {∞}

(or C = C ∪ {∞} ) equipped with the following modified topology. A set O ⊂ R is
open if either O ⊂ R is open, or O = R \K for some compactum K ⊂ R . Show
that

(a) R is homeomorphic to the circle S1 with the topology induced by its inclusion
in R2 ;

(b) R is indeed compact. That is, any open cover of R has a finite subcover.

The definition for C is similar. The corresponding topology makes C homeomorphic
to the sphere S2 with the topology induced by its inclusion in R3 (Riemann sphere).

The two points compactification of R is defined to be the set

R = R ∪ {+∞} ∪ {−∞}

(disjoint union) equipped with the following modified topology. A set O ⊂ R is open
if either O ⊂ R is open, or

O =
“

(R \K) ∩ [inf K,+∞)
”
∪ {+∞}

for some compactum K ⊂ R , or

O =
“

(R \K) ∩ (−∞, supK]
”
∪ {−∞}

for some compactum K ⊂ R . Show that in this case

(a) R is homeomorphic to [−π/2, π/2] with the topology from R ;

(b) R is indeed compact.

15. The extended Borel σ -algebra B̄1 = B(R̄) is the σ -algebra generated by
all open sets of the corresponding R̄ . The definition of B(C̄) is similar.

Let R̄ = R ∪ {−∞} ∪ {+∞} . Prove in this case that B̄1 coincides with
the σ -algebra generated by all intervals (t,+∞] , t ∈ R . In other words,
B̄1 is generated by the family

{x ∈ R̄ : x > t}, t ∈ R.
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16. We say that
f : Ω −→ R̄

is measurable if
f−1(B̄1) ⊂ A.

That is, we replaced in the earlier definition B1 by B̄1 .
Prove that f is measurable if and only if

{x ∈ Ω: f(x) < t} = f−1([−∞, t)) ∈ A ∀t ∈ R.

17. There will be no differences in the arguments for R -valued and R̄ -valued
functions. In what follows we start using the abbreviated notations:

{f < t} def= {x ∈ Ω: f(x) < t}.

18. Theorem 3 Let f , g f1 , . . . be A -measurbale functions for some fixed
σ -algebra A . Then:

(i) If φ : R1 → R1 is B1 -measurable then φ ◦ f is A -measurbale.

(ii) If Φ: R2 → R1 is continuous then Φ(f, g) is A -measurbale.

(iii) All A -measurable functions form a linear vector space over R .

(iv)Functions

sup
n
fn, inf

n
fn, lim sup

n
fn, lim inf

n
fn

are A -measurbale.

19. Let (A,Ω) be a σ -algebra. In the integration theory an important role
will be played by simple functions. A function f is called simple if it is a
finite linear combination of characteristic functions of measurable sets:

f(x) =
N∑
j=1

cjχEj (x), x ∈ Ω,

with some E1, . . . , EN ∈ A , c1,...,N ∈ R . Show that simple functions are
measurable.

20. The important fact is that all measurable functions are built from the sim-
ple functions through the pointwise limits. More precisely, any positive
A -measurable function is a monotone pointwise limit of the simple func-
tions. This is is the content of the following basic approximation theorem.

Theorem 4 (i) Let f : Ω → R , f ≥ 0 be an A -measurable function.
Then there exists a sequence of simple functions {ϕn} such that

0 ≤ ϕ1 ≤ · · · ≤ ϕn ≤ ϕn+1 ≤ · · · ≤ f in Ω,
ϕn(x)→ f(x), n→∞, for all x ∈ Ω.

7



(ii) Let f : Ω → R be an arbitrary A -measurable function. Then there
exists a sequence of simple functions {ϕn} such that

|ϕn| ≤ |f | in Ω,
ϕn(x)→ f(x), n→∞, for all x ∈ Ω.

Proof. 1. In the proof we will use the dyadic system of intervals

∆(N)
k =

[
k − 1
2N

,
k

2N

)
, k,N ∈ Z.

For each fixed N the dyadic intervals {∆(N)
k }k∈Z form the disjoint par-

tition of R into intervals of length 2−N . Dyadic intervals of different
length have the following property: for M > N and for any k and j

either ∆(N)
k ∩∆(M)

j = ∅ or ∆(N)
k ⊃ ∆(M)

j .

Hence

either two dyadic intervals are disjoint, or one sits inside the
other.

The dyadic system is an important tool in real analysis.

2. For the proof of (i) we define

E
(N)
k =

{
k − 1
2N

≤ f < k

2N

}
= f−1

(
∆(N)
k

)
, k,N = 1, 2, . . . ,

The sets E
(N)
k are measurable because f is A -measurable. Now for

N = 1, 2, . . . define

ϕN (x) =

N2N∑
k=1

k − 1
2N

χ
E

(N)
k

(x)

+Nχ{f≥N}(x).

3. First, we show that
ϕN ≤ ϕN+1.

Fix any x0 ∈ Ω . We must have ϕN (x0) = k/2N for some k =
0, . . . , N2N . This implies that k/2N ≤ f(x0) . By the dyadic construction
two and only two cases are possible:

either
k

2N
=

j

2N+1
≤ f(x0) <

j + 1
2N+1

,

or
j + 1
2N+1

≤ f(x0).
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By the definitions this leads to the following alternative for ϕN+1 :

either ϕN+1(x0) = ϕN (x0),
or ϕN+1(x0) ≥ (j + 1)/2N+1 > ϕN (x0).

In both cases ϕN (x0) ≤ ϕN+1(x0) .

Next, we show that

ϕN (x0)→ f(x0), N →∞.

First assume f(x0) = +∞ . Then by the construction ϕN (x0) = N for
all N , and the statement follows. Next assume that f(x0) ∈ R . By the
properties of the dyadic system there exists a unique sequence of intervals
{∆(N)

kN
} , N = 1 , 2 , . . . , such that

∆(1)
k1
⊃ ∆(2)

k2
⊃ · · · 3 f(x0).

Then for the sequence of the left end-points of ∆(N)
kN

we have

kN − 1
2N

= ϕN (x0).

Also the length of ∆(N)
kN

is 2−N → 0 , as N →∞ . Consequently

ϕN (x0) −→ f(x0) as N →∞.

4. For the proof of (ii) split f = f+ − f− , f± ≥ 0 , and apply part (i)
to f+ and f− separately. �

21. More generally, for two σ -algebras (Ai,Ωi) , i = 1, 2 , a map

F : Ω1 −→ Ω2

is called A1 -A2 measurable if F−1(A2) ⊂ A1 . That is, F−1(A2) is a
subalgebra of A1 .

According to this definition, the A -measurability of a function, say,
f : Ω → R̄ means that the map f : Ω → R̄ is A - B̄1 measurable. The
σ -algebras Bn are canonical σ -algebras associated with Rn , and we
usually omit B s from the notations for the maps into Rn .

22. Positive measures. A positive measure (or, simply, a measure) on a
σ -algebra is a map µ : A → [0,+∞] satisfying two conditions:

µ(∅) = 0,

and

µ

 ∞⋃
j=1

Aj

 =
∞∑
j=1

µ (Aj)
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for any disjoint countable family {Aj} , Aj ∈ A .

A measure µ is called finite if µ(Ω) <∞ . A measure µ is called σ -finite
if

Ω =
∞⋃
j=1

Dj with Dj ∈ A, µ(Dj) <∞ ∀j.

The triple (Ω,A, µ) is called the measure space.

23. Examples of measures. The Dirac mass δp at a point p ∈ Ω is a finite
measure on 2Ω (and consequently on any other σ -algebra) defined by

δp(E) =
{

1 if p ∈ E
0 if p 6∈ E.

The counting measure # is a measure on 2Ω (and consequently on any
other σ -algebra) defined by

#(E) =
{

number of elements of E if E is finite
+∞ if E is infinite.

The nontrivial example is the Lebesgue measure in Rn which will be
studied later.

Proposition 5 The following statements hold for elements of A :

(a) µ(∅) = 0 ;

(b) µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B) ;

(c) µ(A) ≤ µ(B) for A ⊂ B ;

(d) for any sequence A1 , A2 , . . .

µ

 ∞⋃
j=1

Aj

 ≤ ∞∑
j=1

µ(Aj);

(e) if A1 ⊂ A2 ⊂ · · · , then

lim
j→∞

µ(Aj) = µ( lim
j→∞

Aj)

= µ

 ∞⋃
j=1

Aj

 ;

(f) if A1 ⊃ A2 ⊃ · · · and µ(A1) < +∞ , then

lim
j→∞

µ(Aj) = µ( lim
j→∞

Aj)

= µ

 ∞⋂
j=1

Aj

 .

10



Part (b) implies that µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B) , provided
µ(A), µ(B) <∞ .

24. A measure µ is called complete if{
e ⊂ E, E ∈ A, µ(E) = 0

}
=⇒ e ∈ A (and hence µ(e) = 0).

Every measure can be extended to a complete by adding all subsets of all
sets of measure 0 . Formally:

Theorem 6 For (Ω,A, µ) define a larger collection of subsets

A = {E ∪ S : E ∈ A, and S ⊂ F, F ∈ A, µ(F ) = 0}.

Then:
(i) A is a σ -algebra;
(ii) if on A we set

µ(E ∪ S) = µ(E),

then µ is a correctly defined complete measure on A which is an extension
of µ , µ|A = µ .

This is from Rudin, 1.36. The difference between µ and µ is in the
underlying σ -algebras. According to the definition µ and µ have the
same range. By tradition µ is denoted by the same letter µ .
The σ -algebra A from the theorem is called the completion of A with re-
spect to µ . Thus the notation is: (Ω,A, µ) is the completion of (Ω,A, µ) .

25. Measures and maps. Let (A1,Ω1) , (A2,Ω2) be σ -algebras, let µ be a
measure on A1 , and let

f : Ω1 −→ Ω2

be an A1 -A2 measurable map. That is, f−1(A2) is a subalgebra of A1 .
Hence we can define the function f∗µ on A2 by writing

(f∗µ)(E) def= µ
(
f−1(E)

)
, E ∈ A2.

Prove that f∗µ is a measure on A2 . It is called the push forward of µ
under f .

26. The following question arises frequently in different areas of mathematics
(functional analysis, probability theory, random processes, ...). Given a
σ -algebra (Ω,A) is it possible to built a measure with some given prop-
erties? There is no general answer to such general question. Individual
construction is needed for each individual case, and it depends on the
properties we need and on the structure of (Ω,A) . In the next sections
we will be dealing with one particular case. It is of fundamental impor-
tance in analysis, and historically was at the origin of the modern real
analysis.
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27. Lebesgue measure on Rn . Does there exist a measure on (Rn,Bn)
which coincides with the usual volume for nice sets? The answer is "yes".
Such measure is called Lebesgue measure. It is given by a nontrivial
construction in several steps outlined below.

Lebesgue outer measure (first step in construction of the Lebesgue mea-
sure). For a closed rectangle

R = [a1, b1]× · · · × [an, bn]

define the number

vol(R) = |b1 − a1| · · · |bn − an|.

It is not difficult to prove that if the rectangles R1 , . . . , RN are disjoint,
and if the rectangle R satisfies R = (⊂,⊃)R1 ∪ · · · ∪RN then

vol(R) = (≤,≥)vol(R1) + · · ·+ vol(RN ).

For any E ⊂ Rn define µ∗(E) ∈ [0,+∞] , the exterrior (outer) measure
of E , by writing

µ∗(E) = inf

∑
j

vol(Rj)

 ,

where the infimum is taken over all coverings of E by finite and countable
number of Rj .

For example, from the definition it directly follows that µ∗({x0}) = 0 .
The outer measure is not a measure. We list more properties of µ∗ .

Proposition 7 The outer measure µ∗ : 2Rn → [0,+∞] enjoys the fol-
lowing properties:

(i) µ∗(∅) = 0 ;

(ii) µ∗(E1) ≤ µ∗(E2) if E1 ⊂ E2 ;

(iii) semiadditivity holds, that is

µ∗

⋃
j

Ej

 ≤∑
j

µ∗(Ej);

(iv) µ∗(R) = vol(R) for any rectangle R .

Property (iv) is important.

28. A set E ⊂ Rn is called (Lebesgue) measurable if for all A and B such
that

A ⊂ E, B ⊂ Rn \ E (1.3)
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we have
µ∗(A ∪B) = µ∗(A) + µ∗(B). (1.4)

We say that A and B are separated by E if (1.3) holds.
The equivalent definition: E ⊂ Rn is measurable if

µ∗(X) = µ∗(X ∩ E) + µ∗(X ∩ Ec) ∀X ⊂ Rn.

We call X in this condition a test set.

29. The main theorem states that the measurable sets form a σ -algebra de-
noted by Ln (the Lebesgue σ -algebra of Rn ), that µ∗ is a complete
measure on it, and that Bn ⊂ Ln .

Theorem 8 The following asserions hold:
(i) µ∗(N) = 0 =⇒ N is measurable;
(ii) all measurable sets form a σ -algebra denoted by L(Rn) , or Ln , with
the unit element Rn ;
(iii) on this σ -algebra µ∗ is a complete measure. Hence if {Ej} is a
sequence of disjoint measurable sets, then

µ∗

⋃
j

Ej

 =
∑
j

µ∗(Ej);

(iv) every rectangle R is measurable;
(v) every Borel set is measurable.

The σ -algebra Ln is called Lebesgue σ -algebra. For E ∈ Ln we call
µ∗(E) the Lebesgue measure of E , and denote it by λn(E) or by |E| .
Clearly λn is a σ -finite measure on Ln Part (i) means that | · | is a
complete measure on Ln . Part (iv) with Proposition 5 give

λn
(

[a1, b1]× · · · × [an, bn]
)

= |b1 − a1| · · · |bn − an|.

Part (v) means that Bn ⊂ Ln . Consequently there does exist a nontrivial
measure on Bn generealising the usual area or volume.
How big is Ln\Bn ? We will see later that Ln differs from Bn essentially
by the sets of the Lebesgue measure zero, and that λn is the completion
of λn|Bn .

30. Proof of (i)-(iii) in Theorem 8 is actually axiomatic and does not
use any property of Rn . The arguments there constitute the so-
called Caratheodory construction of the measure from an outer measure.
Caratheodory construction in its abstract form is a basic tool in mea-
sure theory and its applications. We present it below. Parts (iv), (v) in
Theorem 8 are specific to Rn .
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31. Caratheodory construction. Suppose Ω is a fixed set. Suppose a
function

γ : 2Ω −→ [0,+∞]

is given, which satisfies the following axioms:

(a) γ(∅) = 0 ;

(b) γ(E) ≤ γ(F ) if E ⊂ F ⊂ Ω (monotonicity);

(c) γ

 ∞⋃
j=1

Ej

 ≤ ∞∑
j=1

γ(Ej) (semiadditivity).

Such γ is called an outer measure on Ω . As we showed above the
Lebesgue outer measure µ∗ fits these axioms. We say that E ⊂ Ω is
measurable (with respect to γ ) if

γ(X) = γ(X ∩ E) + γ(X ∩ Ec) ∀X ⊂ Ω. (1.5)

For example, if γ = µ∗ then this is the definition of the Lebesgue mea-
surable set.

Theorem 9 The following asserions hold:

(i) γ(N) = 0 =⇒ N is measurable;

(ii) all measurable sets form a σ -algebra denoted by Γ with the unit
element Ω ;

(iii) the restriction γ|Γ to this σ -algebra is a complete measure.

Proof of (i). This is easy. Fix any test set X ⊂ Ω . By the monotonicity

0 ≤ γ(X ∩N) ≤ γ(N) = 0.

At the same time

γ(X ∩N c) ≤ γ(X)
≤ γ(X ∩N) + γ(X ∩N c)
= γ(X ∩N c).

Hence
γ(X) = γ(X ∩N c) = γ(X ∩N c) + γ(X ∩N).

Part (i) is proved. �

Proof of (ii) and (iii) 1. Denote by Γ the family of all measurable subsets
of Ω . Directly from (1.5) it follows that ∅,Ω ∈ Γ , and

E ∈ Γ =⇒ Ec ∈ Γ.
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Thus to show that Γ is a σ -algebra we only need to prove that the union
of a countable family of measurable sets is also measurable. We do this
below.

2. If E1,2 are measurable then E1 ∪ E2 is also measurable. In fact, fix
any test set X ⊂ Ω . By the monotonicity it suffices to establish

γ(X) ≥ γ(X ∩ (E1 ∪ E2)) + γ(X ∩ (E1 ∪ E2)c).

For the second term we have

X ∩ (E1 ∪ E2)c = X ∩ Ec1 ∩ Ec2.

To represent the first term X ∩ (E1 ∪E2) we split E1 ∪E2 into disjoint
pieces:

E1 ∪ E2 = E1 ∪ (E2 \ E1) = E1 ∪ (Ec1 ∩ E2)

From the monotonicity we deduce that

γ(X ∩ (E1 ∪ E2)) + γ(X ∩ (E1 ∪ E2)c) = γ((X ∩ E1) ∪ (X ∩ Ec1 ∩ E2))
+γ(X ∩ Ec1 ∩ Ec2)

≤ γ(X ∩ E1) + γ(X ∩ Ec1 ∩ E2)
+γ((X ∩ Ec1) ∩ Ec2)

= γ(X ∩ E1) + γ(X ∩ Ec1),

where we used E2 ∈ Γ in the last step. Now using E1 ∈ Γ we conclude
that

γ(X ∩ E1) + γ(X ∩ Ec1) = γ(X),

and consequently

γ(X ∩ (E1 ∪ E2)) + γ(X ∩ (E1 ∪ E2)c) ≤ γ(X).

Therefore E1 ∪ E2 is measurable.

By induction

N⋃
j=1

Ej ,

N⋂
j=1

Ej are measurable if all Ej are,

with any N < +∞ . Now we know that a finite number of operations
applied to a finite number of measurable sets leads to a measurable set.

3. To prove (ii) we need to show that for A1, A2, . . . ∈ Γ we have⋃
j

Aj ∈ Γ.

Without loss of generality we may assume that

Ai ∩Aj = ∅, i 6= j.

15



In fact, set
E1 = A1

E2 = A2 \A1

E3 = A3 \ (A2 ∪A1)
· · ·
En = An \ (An−1 ∪ · · · ∪A1)
· · ·

Then En ∈ Γ since it is obtained from A1 , . . . , An by a finite number
of operations. Moreover Ej is a disjoint sequence with⋃

j

Ej =
⋃
j

Aj .

Next, for our disjoint family {Aj} we define

A =
⋃
j

Aj , Bn =
n⋃
j=1

Aj .

To show that A ∈ Γ fix any test set X ⊂ Ω . Since Bn ∈ Γ we derive
that

γ(X) = γ(X ∩Bn) + γ(X ∩Bcn)
≥ γ(X ∩Bn) + γ(X ∩Ac),

where on the last step we used the monotonicity for Bcn ⊃ Ac . Observe
that since our disjoint Aj are measurable then

γ(X ∩Bn) = γ((X ∩Bn) ∩An) + γ((X ∩Bn) ∩Acn)
= γ(X ∩An) + γ(X ∩Bn−1)
= γ(X ∩An) + γ(X ∩An−1) + γ(X ∩Bn−2)
= · · ·

=
n∑
j=1

γ(X ∩Aj).

Consequently

γ(X) ≥
n∑
j=1

γ(X ∩Aj) + γ(X ∩Ac).

Letting n→∞ and using the semiadditivity we discover that

γ(X) ≥
∞∑
j=1

γ(X ∩Aj) + γ(X ∩Ac)

≥ γ

⋃
j

(X ∩Aj)

+ γ(X ∩Ac)

= γ(X ∩A) + γ(X ∩Ac)
≥ γ(X).
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Hence A ∈ Γ , which shows that Γ is a σ -algebra.
Test the last formula with X = A and notice that A∩Aj = Aj , A∩Ac =
∅ . The result is

γ

⋃
j

Aj

 =
∑
j

γ(Aj).

This proves (iii) �

32. Proof of Theorem 8 (iv) and (v). 1. Part (v) follows directly from (iv)
since Bn is generated by all rectangles. The rest of the proof is devoted
to establishing (iv).
2. For any E ⊂ Rn and any δ > 0 define

µ∗δ(E) def= inf


∞∑
j=1

vol(Rj) : E ⊂
∞⋃
j=1

Rj , diam(Rj) < δ ∀j

 .

In these notations we have µ∗(E) = µ∗∞(E) for the Lebesgue outer mea-
sure. It is easy to show by splitting the rectangles that

µ∗(E) = µ∗δ(E) ∀E ⊂ Rn, ∀δ > 0.

Hence, when calculating the outer measure of a set we can assume that
each of the covering rectangles has the diameter less than δ , δ > 0 .
3. Now take any bounded rectangle R , 0 < vol(R) <∞ . Fix any test
set X ⊂ Rn . To prove that R ∈ Ln we shall show that

µ∗(X ∩R) + µ∗(X ∩Rc) ≤ µ∗(X) + ε ∀ε > 0. (1.6)

Take any ε > 0 . For this ε find δ > 0 , and a rectangle Rδ ⊂ R , such
that

dist(Rδ, Rc) > 10δ but µ∗(R \Rδ) < ε.

We can easily do this since R \Rδ is just a finite union of rectangles with
one dimension of the order δ , and the other n−1 dimensions of the order
diam(R) . We start estimating the right hand side in (1.6):

µ∗(X ∩R) + µ∗(X ∩Rc) ≤ µ∗(X ∩Rδ) + µ∗(X ∩ (R \Rδ))
+µ∗(X ∩Rc)

≤ µ∗(X ∩Rδ) + µ∗(X ∩Rc) + ε. (1.7)

The advantage of (1.7) is that the sets in the last line are separated by
the distance 10δ > 0 .
4. In order to continue estimating (1.6) we take an almost optimal cover
of our X by Rj with small diameters. Namely, by the definitions there
exist a sequence {Rj} such that

X ⊂
∞⋃
j=1

Rj ,

∞∑
j=1

vol(Rj) < µ∗(X) + ε, diam(Rj) < δ ∀j.
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We partition {Rj} into 3 groups:

I. all Rj : Rj ∩X ∩Rδ 6= ∅, denoted by R(I)
j

II. all Rj : Rj ∩X ∩Rc 6= ∅, denoted by R(II)
j

III. all other Rj , denoted by R(III)
j .

The groups are disjoint. In fact, this is trivial for group III. Groups I and
II are also disjoint. Indeed, seeking a contradiction suppose that some RJ
is in group I and in group II. Then we can find points x, y ∈ RJ such
that x ∈ Rδ and y ∈ Rc . But then

|x− y| ≤ diam(RJ) < δ and |x− y| ≥ dist(Rδ, Rc) > 10δ,

which is a clear contradiction.

Next, observe that group I covers X ∩Rδ , and group II covers X ∩Rc ,⋃
j

R
(I)
j ⊃ (X ∩Rδ),

⋃
j

R
(II)
j ⊃ (X ∩Rc).

Consequently

µ∗(X ∩Rδ) ≤
∑
j

vol
(
R

(I)
j

)
,

µ∗(X ∩Rc) ≤
∑
j

vol
(
R

(II)
j

)
.

Hence, we can continue (1.7) to derive that

µ∗(X ∩R) + µ∗(X ∩Rc) ≤
∑
j

vol
(
R

(I)
j

)
+
∑
j

vol
(
R

(II)
j

)
+ ε

≤
∞∑
j=1

vol(Rj) (the sum over all 3 groups)

+ε
≤ µ∗(X) + 2ε.

Therefore we established (1.6), and Theorem 8 is now proved. �

33. Prove that λn({x0}) = 0 , λ2([0, 1]× {1}) = 0 , λ2({(x, y) : x = y}) .

34. Let f : [0, 1]→ R be a continuous function. Let Γ(f) be its graph viewed
as a subset of R2 . Prove that λ2(Γ(f)) = 0 .

35. Accepting the Axiom of Choice, it is possible to construct E ⊂ R which
is not Lebesgue measurable. Namely, define the equivalence reation x

18



36. Lebesgue and Borel sets. Borel algebra Bn contains all open and all
closed sets. We introduce slightly more general classes of sets Fσ, Gδ ⊂
Bn. Here a set E has the type Fσ if it is a countable union of closed
sets,

E =
∞⋃
j=1

Cj , Cj is closed.

A set E has the type Gδ if it is a countable intersection of open sets,

E =
∞⋂
j=1

Oj , Oj is open.

It follows directly that closed sets are Fσ sets and open sets are Gδ sets.
It requires a little extra effort to show that any open set is an Fσ set, and
any closed set is a Gδ set.

Theorem 10 The following is true:

(i) for every measurable set E

|E| = inf
O⊃E,O−open

|O|;

(ii) set E is measurable if and only if

E = H \ Z for some H ∈ Gδ and Z such that |Z| = 0;

(iii) set E is measurable if and only if

E = H ∪ Z for some H ∈ Fσ and Z such that |Z| = 0;

(iv) for every measurable set E

|E| = sup
C⊂E,C−closed

|C|.

Therefore the σ -algebra of Lebesgue measurable sets is bigger than Bn
only by the sets of Lebesgue measure 0 . We introduce the family of
null-sets,

Nn
def= {N ⊂ Rn : λn(N) = 0} .

From (ii) we derive that for any N ∈ Nn there exists H ∈ Bn such that
N ⊂ H and |H| = 0 . At the same time we deduce from (iii) that

Ln = Bn ∪Nn. (1.8)

Hence
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the Lebesgue σ -algebra is the completion of the Borel σ -algebra
with respect to the Lebesgue measure,

(Ln, λn) =
(
Bn, λn|Bn

)
.

37. As we saw above the null sets play an important role in the theory. Every
countable set is a null set. Example of the Cantor set C ⊂ R , C ∈ N1 ,
shows that the converse is not true.

38. Tensor products of Lebesgue σ -algebras. Theorem 10 can be used to clarify the
relation between Ln and L1 ⊗ · · · ⊗ L1 . We have proved earlier that B2 = B1 ⊗B1 .
For the Lebesgue σ -algebra the answer is

L1 ⊗ L1 & L2. (1.9)

Consequently (1.8) and the inclusions

B2 = B1 ⊗ B1 ⊂ L1 ⊗ L1 ⊂ L2

imply that L2 is the completion of L1 ⊗ L1 with respect to λ2 ,`
L2, λ

2
´

=
`
L1 ⊗ L1, λ

2|L1⊗L1

´
.

39. The key role in the proof of (1.9) will be played by the following property of the null-sets:

if E ∈ Nk then µ∗(E×Rl) = 0 , and hence E×F ∈ Lk+l with λk+l(E×
F ) = 0 for any F ⊂ Rl .

(Prove this.) Then we deduce from (1.8) that

L1 ⊗ L1 = σ
“

(B1 ∪N1)× (B1 ∪N1)
”

⊂ σ((B1 × B1) ∪N2)

⊂ σ((B1 ⊗ B1) ∪N2)

= σ(B2 ∪N2)

= σ(L2)

= L2.

40. To see that L1 ⊗ L1 6= L2 we take the Lebesgue non-measurable set Λ ⊂ R1 , and
write E0 = Λ × {y0} . Since λ1({y0}) = 0 , then E0 ⊂ R2 is λ2 -measurable, and
λ2(E0) = 0 . We claim that

E0 /∈ L1 ⊗ L1. (1.10)

41. We will need the following abstract statement. It is also interesting in its own right.

Proposition 11 Let C be any collection of subsets of a fixed set Ω . Let F be any
set. Then

σΩ(C) ∩ F = σΩ∩F (C ∩ F ).

That is, for a given collection of sets we can proceed in two ways. The first way is to
take the σ -algebra generated by it, and then intersect this σ -algebra with a fixed set
F . (That is to intersect its every element with F .) The second way is to intersect
the collection with F , and then take the σ -algebra generated by this new collection
of subsets of Ω ∩ F . We claim that the resulting σ -algebra is the same for both
procedures.
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It is useful to recall that in the proof of Theorem 2 we have encountered a similar
statement. There we essentially proved that for a collection C ⊂ Ω and a set Ξ one
has

σΩ(C)× Ξ = σΩ×Ξ(C × Ξ).

Proof. 1. Inclusion σΩ(C) ∩ F ⊃ σΩ∩F (C ∩ F ) is easy to see. Indeed, σΩ(C) ∩ F
is a σ -algebra with the unit element Ω ∩ F containing the collection C ∩ F . But
σΩ∩F (C ∩ F ) is the minimal such σ -algebra.

2. We prove the inclusion σΩ(C) ∩ F ⊂ σΩ∩F (C ∩ F ) . For that we will argue using
the principle of good sets. Define the collection of good sets

E def
= {E ⊂ Ω: E ∈ σΩ(C) and E ∩ F ∈ σΩ∩F (C ∩ F )} .

We claim that (E,Ω) is a σ -algebra and hence
E = σΩ(E). (1.11)

Accepting the claim for a moment we at once conclude the proof of the proposition.
Indeed, the definition of E implies that

C ⊂ E ⊂ σΩ(C),
and that

E ∩ F ⊂ σΩ∩F (C ∩ F ).

Apply the σΩ operation to the first chain of inclusions we obtain by (1.11)
E = σΩ(E) = σΩ(C).

Substitute this into the second inclusion to discover
σΩ(C) ∩ F ⊂ σΩ∩F (C ∩ F ),

which concludes the proof.

It is left to establish (1.11). Clearly ∅,Ω ∈ E . Suppose E ∈ E . To verify that Ec ∈ E
we observe at once that Ec ∈ σΩ(C) . Moreover, E ∩ F ∈ σΩ∩F (C ∩ F ) implies

Ec ∩ F = (Ω \ E) ∩ F
= (Ω ∩ F ) \ (E ∩ F )

∈ σΩ∩F (C ∩ F ).

Hence Ec ∈ E .
Finally, take a sequence of sets {Ej} , Ej ∈ E . At once from the definition of E[

j

Ej ∈ σΩ(C).

Moreover, by the same definition Ej ∩ F ∈ σΩ∩F (C ∩ F ) for any j . But then0@[
j

Ej

1A ∩ F =
[
j

(Ej ∩ F ) ∈ σΩ∩F (C ∩ F ).

This proves (1.11). �

42. Now we prove the actual validity of (1.10). Define
L0 = {(x, y) ∈ R2 : y = y0}

= R× {y0},
so E0 ⊂ L0 . From Proposition 11 we deduce at once that

(L1 ⊗ L1) ∩ L0 = σ(L1 × L1) ∩ L0

= σ ((L1 × L1) ∩ L0)

= σ(L1 × {y0})
= L1 × {y0},

where the last step follows from the fact that L1 × {y0} is a σ -algebra with the unit
element L0 . Therefore (1.10) holds since Λ /∈ L1 .
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