

Welcome to 4B Section

Section Information

- ▶ Attendance will be taken. Failure to regularly attend may factor negatively into your participation/quiz score.
- ▶ There will be regular quizzes in this section.
- ▶ Today there is only a worksheet. Turning in this worksheet will allow you to vote on office hours.

Outline

- ▶ Attendance, part i. Initial the sheet that is being passed around.
- ▶ Quizzes (none this week).
- ▶ Typically I will follow this by (briefly) discussing what Dr. Cotton-Clay has discussed in lecture. If all goes according to plan, this discussion will mostly be of possible pitfalls, and will take 5 minutes
- ▶ I will go over any questions you might have, about lecture, the text, or *homework that is already graded*. Do not expect to get answers to Webassign problems. If all goes according to plan, this will take at least 10 minutes. If it takes less than that, it is a sign that people are not making the necessary effort to understand the material (a bad sign, in other words).

Outline (cont)

- ▶ I will pass out a worksheet. I encourage you to ask me questions or discuss this with your neighbors. During this time, I will ask people if they are willing to present their work at the end of class.
- ▶ If all goes well, there will be enough time to present solutions.
- ▶ Attendance, part ii.

Math Lab

Location/Time

I will be in the Math Lab from 3-5pm every Monday. Math Lab is on the first floor of South Hall, in Room 1607.

Map

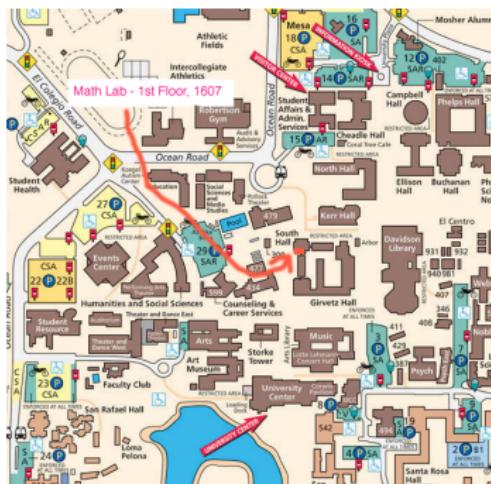


Figure: Math Lab Location

Office Hours

Location

Office Hours will occur in South Hall, Room 6432 K (Hours: TBD). Finding the exact room can be a bit daunting, but if you ask a graduate student they will almost certainly point you in the right direction.

Map

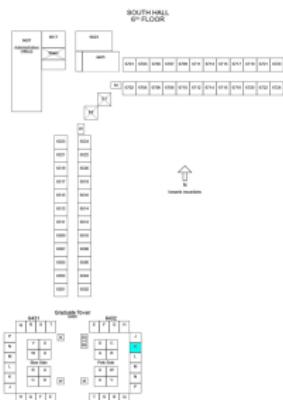


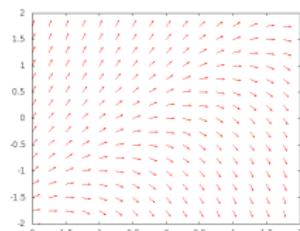
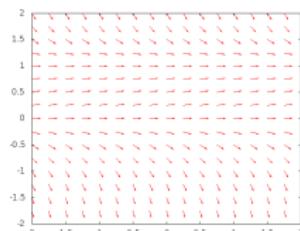
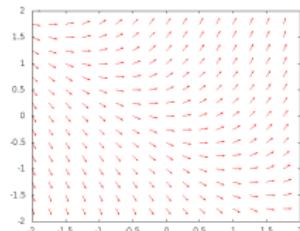
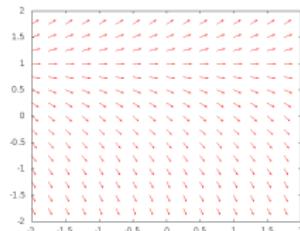
Figure: Office Hours Location

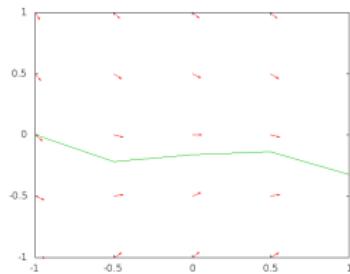
Slope/Direction Fields

Definition

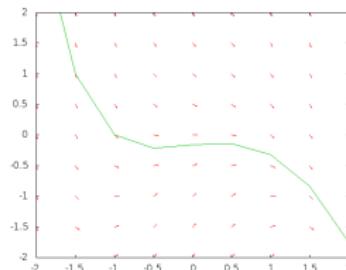
A slope field is a diagram found by solving the differential equation for the first derivative at points in the yt -plane.

Fields


Figure: Examples of slope fields.

Common Pitfall


Long-Term Behavior

Consider the DE $y' = -y - t^2$. If we use the slope field to plot the integral curve at $y(-1) = 0$, we obtain the result shown in Figure 4 (a). If we go only by this sketch, it is plausible this DE demonstrates long-term oscillatory behavior, but it does not (see Figure 4 (b)).

Example

(a)

(b)

Figure: Slope fields can be misleading.

Separable Equations

Definition

A differential equation is *separable* if we may write it as

$$M(x) + N(y) \frac{dy}{dx} = 0.$$

Method of Solution

We may solve such differential equations by “splitting the derivative” and integrating:

$$M(x)dx + N(y)dy = 0$$

$$\int M(x)dx + \int N(y)dy = 0.$$

We then solve the resulting equation, which is purely in terms of y and x (no y 's) for y .

Common Pitfall

Maslow's Hammer

Not every DE is separable. When we are done with this topic, we will move onto other DE that are not soluble by this method. *In general, most DE have no known solution, and numerical methods are the only known attack. Do not expect any one tool to work universally.*

Example Nonseparable Equation

Try to separate $y' = xy - \sin x$.

Questions

Questions

Any questions on material presented here, in lecture, or in the book?

This presentation may be found at

<http://math.ucsb.edu/~ldalton/>.