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Abstract. In this paper, we consider a multispecies generalization of the porous media equation
used in cancer modelling. Here each species represents a different cell population e.g. healthy
cells versus tumor cells. The density of each population solves a continuity equation where
the velocity field is given by a pressure gradient that is induced by the total cell density. The
resulting model is a challenging system of coupled hyperbolic and parabolic equations, indeed,
the individual species do not regularize over time and discontinuities can both form and persist.
As a result, the existence of weak solutions to this model has only been achieved recently and
many important questions still remain. A particularly important open question is whether it
is possible for the different populations to mix together if they were separated at initial time.
The main result of this paper is the construction of solutions that do not mix. To do this, we
show that it is possible to construct both the forward and backward Lagrangian flows along the
pressure gradient — a result that may be of independent interest as the pressure gradient lacks
sufficient regularity to apply the theory of regular Lagrangian flows. To overcome this difficulty,

we combine ideas from [CdL08] and [GPŚG19] to show that the bad parts of the pressure gradient
can be ignored. Once we have the flow maps, it is straightforward to show that the populations
do not mix.

1. Introduction

The Porous Media Equation (PME) is a non-linear analogue of the heat equation that has
various important physical applications [Váz07]. PME describes the evolution of a density ρ
flowing down a pressure gradient ∇p, where the pressure function p is coupled to the density
through a monotone relation. A particularly important application of PME is the modelling of
living cells and tissues, particularly in the context of tumor growth [BKMP03, PT08, RBE+10,
PQV14]. In these models, the cells are treated as a viscous and nearly incompressible fluid.
When cells proliferate and grow, there is a buildup of mechanical pressure, which both pushes
cells down the pressure gradient and affects growth rates via the biological phenomenon of contact
inhibition [PQV14]. This can be modeled by PME with a pressure dependent source term.

For realistic modelling, it is important to take into account multiple cell populations (e.g.
healthy cells versus tumor cells) and nutrient availability. In this paper, we will be interested in
studying a system of evolution equations for a finite number of cell populations with densities

ρ1, . . . , ρℓ, whose total density ρ =
∑ℓ

i=1 ρi evolves according to PME with a source term. Given
a parameter γ > 0, each individual population evolves according to the continuity equation

(1.1) ∂tρi −∇ · (ρi∇p) = ρiGi, p = ργ ,
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where Gi is a growth function that depends on the pressure and a nutrient variable n. The
nutrient is coupled to the other variables through the diffusion equation

(1.2) ∂tn− α∆n = −n
ℓ∑

i=1

βiρi,

where α, βi are scalars that determine the diffusion rate and consumption rate of the nutrients
respectively. The connection between the system (1.1-1.2) and the classical PME can be seen by
summing (1.1) over each of the populations. Doing so produces the equation

(1.3) ∂tρ−∇ · (ρ∇p) = ρG, p = ργ ,

where G =
∑ℓ

i=1
ρi
ρ Gi.

In the case of multiple cell populations, the model is a challenging system of coupled PDEs.
Indeed, existence of solutions to these systems in dimensions d > 1 was only achieved recently
(see [BHI+20, CFSS18] for results in one dimension) in the series of papers [GPG19, BCP20,
LX21, Jac21] for d > 1, while well-posedness remains open. The difficulty of these systems stems
from the fact that although equation (1.3) is degenerate parabolic, the evolution equations for the
individual populations (1.1) are hyperbolic. Hence, the equation does not have any regularizing
effect on the ρi (for instance discontinuities at initial time will persist throughout the evolution).
While [CFSS18] was able to obtain strong compactness of the ρi in one dimension, the situation

in d > 1 is more complicated. Following the approach of [GPŚG19], all of the results for d > 1
have constructed solutions by obtaining strong compactness for the pressure variable instead.
The advantage of working with the pressure is that one can focus on the good properties of
equation (1.3), however, this approach cannot say much about the properties of the limiting ρi.

An important question that has remained open is whether the individual populations remain
unmixed throughout the evolution if they were separated at initial time. More concretely, given
initial data {ρ0i }i∈{1,...,ℓ} such that min(ρ0i , ρ

0
j ) = 0 for all i ̸= j one wishes to know whether

it is possible to construct solutions such that min(ρi, ρj) = 0 almost everywhere for all i ̸=
j. The main result of this paper is an affirmative answer to this question: it is possible to
construct nonmixing solutions. To establish the nonmixing property, we prove the existence of
the Lagrangian flow along −∇p — a result that may be of independent interest. Indeed, let us
emphasize that −∇p does not have sufficient regularity to apply the theory of regular Lagrangian
flows [DL89, Amb04, Amb08], forcing us to develop a new approach based on the quantitative
arguments in [CdL08]. Once we have the flow map, we show that the densities satisfy an explicit
representation formula (c.f. Definition 1.1) that implies the non-mixing property. Finally, let
us also note that our arguments are strong enough to pass to the incompressible limit γ → ∞,
which is an important special case for realistic modelling.

1.1. Lagrangian flows for PME. As we mentioned above, constructing Lagrangian flows for
PME is difficult to due the low regularity of the pressure variable p. Even in the case of a single
population, it is well known that when ρ0 has compact support ∆p is a singular measure [Váz07].
Notably, this is not strong enough to bound ∇p in BV. Hence, the theory of regular Lagrangian
flows cannot be applied to −∇p even in the most classical case.

On the other hand, PME has much more structure than a flow along an arbitrary vector field
with poor regularity. To understand this better, we can use the relation p = ργ to rewrite (1.3)
in terms of p, leading to the equivalent formulation

(1.4) ∂tp− |∇p|2 − γp(∆p+G) = 0.

From (1.4), one can see that PME is a degenerate parabolic equation, whose second order ir-
regularities must occur in the vicinity of the level set {p = 0}. Indeed, it is known that quan-
tities of the form

∫
QT

p|D2p|2 are finite under rather general assumptions on the structure of G
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[MPQ17, GPG19, DP21]. Hence, there is hope to construct Lagrangian flows provided that one
can show that most trajectories stay away from {p = 0}.

The question of whether Lagrangian trajectories avoid {p = 0} is closely tied to the structure of
equation (1.4). If one assumes formally that X is a Lagrangian flow map satisfying the equation
∂tX = −∇p ◦X, then

(1.5)
d

dt

(
p ◦X) =

(
∂tp− |∇p|2

)
◦X =

(
γp(∆p+G)

)
◦X.

The singularity of ∆p at {p = 0} is known to be positive, but we could still hope to gain
information from (1.5) by bounding the negative part of γ(∆p+G). Indeed, a uniform bound on
the negative part would imply that trajectories that are not near {p = 0} at time t were never
near {p = 0} in the past. This would allow us to construct regular Lagrangian flows along such
trajectories using existing theory.

Due to the complicated structure of our growth term G, uniform bounds seem extremely

unlikely (G =
∑ℓ

i=1
ρi
ρ Gi can have discontinuities from the ρi) and there are cases where they

are known to be false [DP21]. This is in contrast to the classical case G = 0, where bounds
are known through the celebrated Aronson-Bénilan (AB) estimates [AB79] (see also [PQV14] for
similar uniform estimates in the case of one population where G is a decreasing function of the
pressure only).

Luckily, the situation is not entirely hopeless. In [GPŚG19], the authors developed new argu-
ments to obtain L2 and L3 analogues of the AB estimates in the presence of multiple popula-
tions; however, these estimates require somewhat restrictive assumptions on the structure of the
Gi’s and they deteriorate in the γ → ∞ limit. In this paper, we make a meaningful improve-
ment to these estimates by instead considering the slightly weaker quantity

∫
[0,T ]×Rd γ

2ρ log(1 +
1
p)

2(1−λ′)(∆p + G)2− for some λ′ ∈ (0, 1]. By working with this quantity instead, we are able to

drop the restrictive assumptions on the Gi’s when γ < ∞ and we can pass to the γ → ∞ limit
for λ′ ∈ (0, 1/2). Once we have a bound on the negative part of γ(∆p + G), we can use the

structure of (1.4) to conclude that
∫
γρ|∆p+G| log(1+ 1

p)
(1−λ′) is bounded which gives us an L1

control on the forward and backward in time behavior of (1.5).
Unsurprisingly, a price must be paid for downgrading L∞ estimates to L1 estimates. L1

bounds applied to (1.5) can only be used to obtain the following logarithmic version of Gronwall’s
inequality

(1.6) sup
t∈[0,T ]

∫
E
ρ0(x) log(1 +

1

p(t,X(t, x))
) dx ≲T 1 +

∫
E
ρ0(x) log(1 +

1

p(0, x)
) dx

where E ⊂ Rd is chosen to make the right hand side finite. This is not strong enough to rule
out the possibility that every Lagrangian trajectory spends some time near {p = 0}. Thus, we
cannot just hope to apply the existing theory of regular Lagrangian flows.

To circumvent this problem, we instead adapt the logarithmic Gronwall estimates in [CdL08]
to show that doubly logarithmic quantities measuring the stability of approximations to the
forward and backward flow maps can be controlled. Although the doubly logarithmic bounds
are extremely weak, they will provide sufficient compactness to deduce that the approximations
converge to the correct limit. Once we have the flow maps, everything else is smooth sailing and
the nonmixing results neatly follow.

1.2. Preliminaries and main results. We begin by giving a more concrete description of the
growth terms and our important assumptions on them. Throughout the paper we shall place the
following assumptions on the Gi.
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(G1) Each Gi := Gi(p, n) is a continuous and uniformly bounded function of the pressure p
and nutrient n.

(G2) If the pressure is sufficiently high, no growth occurs regardless of nutrient availability,
i.e. there exists some ph > 0 such that Gi(p, n) < 0 for all i ∈ {1, . . . , ℓ}, n ∈ [0,∞) and
p > ph (the value ph has been called the homeostatic pressure in the literature [PQV14]).

(G3) The following mild technical condition on the derivatives holds:( ℓ∑
i=1

p∂pGi(p, n)
)
+
+ max

i∈{1,...,ℓ}
|∂nGi(p, n)| ∈ L∞

loc([0,∞)2).

When we pass to the incompressible limit γ → ∞ we will require the Gi to satisfy two additional
condition:

(G4) mini∈{1,...,ℓ} inf(p,n)∈[0,∞)2
1
2Gi(p, n)−

(
p∂pGi(p, n)

)
+
> 0.

Unlike (G1-G3), this last condition is much more restrictive from a modelling perspective.
(G4) forces Gi(0, 0) > 0, meaning the cells must grow even in the absence of nutrients. Let
us note however that (G4) is not purely technical, some property related to (G4) is necessary
to guarantee the nonmixing property in the incompressible case. Given two populations with
growth functions satisfying G1(0, 0) > 0 and G2(0, 0) < 0, it is easy to cook up a scenario where
population 1 instantaneously mixes into population 2. For instance, this will always happen in
a scenario where one sets the initial nutrients to zero and chooses a starting condition where the
populations are separated, share a codimension 1 boundary, and both saturate the incompressible
constraint on their respective supports.

For the initial data, all of our conditions are on the total density ρ0 =
∑ℓ

i=1 ρ
0
i , the corre-

sponding initial pressure p0, and the starting nutrient level n0. We shall require the following
regularity conditions.

(ID1) ρ0 ∈ L1(Rd), ρ0 ∈ [0, p
1
γ

h ], and |x|2ρ0 ∈ L1(Rd).

(ID2) ∇p0 ∈ L2(Rd), p0 ≤ ph almost everywhere, ρ0 log(1+ 1
p0
) ∈ L1(Rd), and n0 ∈W 1,∞(Rd)∩

H1(Rd).

(ID3) γρ0(∆p0 +
∑ℓ

i=1
ρ0i
ρi
Gi(p

0, n0))2− ∈ L1(Rd).

When we pass to the incompressible limit we shall require the two following additional conditions

(ID4) ρ0 ∈ {0, 1} almost everywhere.
(ID5) There exists a constant λ > 0 such that ρ0 log(1 + 1

p0
)λ ∈ L1(Rd).

Next, we give a concrete description of the solutions that we are interested in constructing.

Definition 1.1. We will say that a tuple (ρ1, . . . , ρk, p, n) is a complete Lagrangian solution to
the system (1.1-1.2) with initial data (ρ01, . . . , ρ

0
ℓ , n

0) if the following conditions are met.

(i) (ρ1, . . . , ρk, p, n) is a weak solution to (1.1-1.2) with initial data (ρ01, . . . , ρ
0
ℓ , n

0) such that

for any T > 0, ρ =
∑ℓ

i=1 ρi ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)).
(ii) For all t, s ≥ 0 there exist unique forward and backward flow maps X,Y satisfying the

Lagrangian Flow equations

(1.7) X(t, s, x) = x−
∫ t+s

s
∇p(τ,X(τ, s, x)) dτ for almost all x ∈ spt(ρ(s, ·)),

and

(1.8) Y (t, s, x) = x+

∫ s

min(s−t,0)
∇p(τ, Y (τ, s, x))dτ for almost all x ∈ spt(ρ(s, ·)).
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(iii) There exists a constant B ≥ 0 such that for all t, s ≥ 0

(1.9) e−tBρ(s+ t, ·) ≤ X(t, s, ·)#ρ(s, ·) ≤ etBρ(s+ t, ·) for almost all x ∈ spt(ρ(s+ t, ·)),
and

(1.10) e−tBρ(s, ·) ≤ Y (t, s, ·)#ρ(s+ t, ·) ≤ etBρ(s, ·) for almost all x ∈ spt(ρ(s, ·)).
(iv) The maps satisfy the semigroup property

X(t, s, x) = X(t− t′, s+ t′, X(t′, s, x)) for almost all x ∈ spt(ρ(s, ·)),(1.11)

Y (t, s, x) = Y (t− t′, s− t′, Y (t′, s, x)) for almost all x ∈ spt(ρ(s, ·)),(1.12)

and the inversion formulas

X(t, s, Y (t, s+ t, x)) = x for almost all x ∈ spt(ρ(t+ s, ·)),(1.13)

Y (t, s,X(t, s− t, x′)) = x′ for almost all x′ ∈ spt(ρ(s, ·)).(1.14)

(v) For any test function φ, each ρi satisfies the representation formula

(1.15)

∫
Rd

ρi(s+ t, x)φ(x) =

∫
Rd

ρi(s, x)φ(X(t, s, x)) exp
(∫ t+s

s
Gi ◦X(τ, s, x)dτ

)
dx,

where Gi ◦X(τ, s, x) is shorthand for Gi

(
p
(
τ,X(τ, s, x)

)
, n

(
τ,X(τ, s, x)

))
.

Remark 1.2. The uniqueness of the flow maps along −∇p guarantees the uniqueness of the ρi
and n when p is held fixed. However, we are not able to prove that the system itself has a unique
solution. Indeed, we cannot rule out the possibility that there could be solutions with different
pressure variables.

We are now ready to give our main results. For convenience we restrict our attention to values
of γ ≥ 1.

Theorem 1.3. Given growth terms satisfying assumptions (G1-G3), initial data (ρ01, . . . , ρ
0
ℓ , n

0)
satisfying (ID1-ID3), and γ ∈ [1,∞), there exists a complete Lagrangian solution (ρ1, . . . , ρℓ, n, p)
for (1.1-1.2). Furthermore if for some i ̸= j we have min(ρ0i (x), ρ

0
j (x)) = 0 almost everywhere,

then for every t ≥ 0 we have min(ρi(t, x), ρj(t, x)) = 0 almost everywhere in x.

Theorem 1.4. Given growth terms satisfying assumptions (G1-G4) and initial data (ρ01, . . . , ρ
0
ℓ , n

0)
satisfying (ID1-ID5) along with the additional condition ρ0 ∈ {0, 1} almost everywhere, there
exists a complete Lagrangian solution (ρ1, . . . , ρℓ, n, p) to (1.1-1.2) with γ = ∞, i.e. the incom-
pressible system

(1.16) ∂tρi −∇ · (ρi∇p) = ρiGi, p(1− ρ) = 0, ρ ≤ 1

(1.17) ∂tn− α∆n = −n
ℓ∑

i=1

βiρi.

Furthermore if for some i ̸= j we have min(ρ0i (x), ρ
0
j (x)) = 0 almost everywhere, then for every

t ≥ 0 we have min(ρi(t, x), ρj(t, x)) = 0 almost everywhere in x.

Remark 1.5. In the incompressible case, one must take some extra care in verifying the assump-
tion (ID2) on the initial data. Indeed, one cannot directly obtain the initial pressure p0 from the
initial total density ρ0. Instead p0 must be obtained by solving the equation

(1.18) ∆p0 +

ℓ∑
i=1

ρ0i
ρ0
Gi(p

0, n0), p0(1− ρ0) = 0.
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While the condition ∇p0 ∈ L2(Rd) is essentially automatic, the condition ρ0 log(1+ 1
p0
) ∈ L1(Rd)

forces p0 to grow sufficiently quickly as one moves away from the boundary of spt(ρ0). This
forces some regularity on the geometry of the boundary spt(ρ0). For instance, an interior ball
condition is sufficient.

The rest of the paper is structured as follows. In Section 2, we assume that we have a smooth
solution to the system and collect a number of important estimates, most crucially, the weighted
AB type estimate on γ2(∆p+G)2− and the weighted L1 estimate on γ|∆p+G| . In section 3, we
show how these estimates can be used to establish equicontinuity properties for the associated
Lagrangian flow maps. In the final Section, Section 4, we show how one can construct smooth
approximations to the system and then take limits to prove the main results.

Acknowledgements
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2. PME estimates

Throughout this section, we will assume that we have a smooth solution (ρ1, . . . , ρℓ, p, n) to the
system (1.1-1.2) where the initial data satisfies assumptions (ID1-ID3), the growth terms satisfy
(G1-G3) and γ ∈ [1,∞). This will allow us to investigate properties of the system without having
to worry about integrability or differentiability issues. Our main goal in this section will be to
build towards bounds on p|D2p|2 and ρ(∆p+G)2− that only depend on the information (ID1-ID4).

For notational convenience we shall use QT to denote the space time domain QT := [0, T ]× Rd

for any T > 0.
Our analysis and estimates will be focused on the “nice” parabolic equations (1.3) and (1.4),

rather than the hyperbolic equation (1.1). Nonetheless, we will still need to work with the

individual densities ρi through their presence in the growth term G =
∑ℓ

i=1
ρi
ρ Gi. A formal

calculation shows that the ratios ci :=
ρi
ρ satisfy the transport equation

(2.1) ∂tci −∇ci · ∇p = ci(Gi −G).

Since we have already assumed we are working with smooth solutions, we can use this formula
without issue. It will play an important role in some of the subsequent estimates.

We begin with some standard estimates for PME type equations.

Lemma 2.1. Let B = sup(p,n)∈[0,∞)2 maxi |Gi(p, n)| and fix some time T ≥ 0. For any m ≥ 1

(2.2)

∫
Rd×{T}

1

m
ρm +

∫
QT

(m− 1)ρm−1∇ρ · ∇p = eBmT

∫
Rd

1

m
(ρ0)m,

and

(2.3)

∫
Rd×{T}

ρ log(ρ) +

∫
QT

∇ρ · ∇p ≤
∫
Rd×{T}

ρ+

∫
QT

Bρ log(ρ)

(2.4)

∫
Rd×{T}

|x|2ρ ≤ eT (B+1)
(∫

Rd

|x|2ρ0 +
∫
QT

ρ|∇p|2
)
.

Furthermore, p ≤ ph almost everywhere.

Remark 2.2. Note that the negative part of ρ log(ρ) can be controlled by the second moments of

ρ. Indeed, one has −ρ log(ρ) ≲d ρ
1− 1

d+1 ≲d ρ(1 + |x|2) + (1 + |x|2)−d.
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Proof. The first relation follows from integrating equation (1.3) against ρm−1 and using Gron-
wall’s inequality. The second relation follows from integrating (1.3) against log(ρ+ δ), and then
sending δ → 0. The third bound follows from integrating (1.3) against |x|2, using Young’s in-

equality (one can first integrate against |x|2e−δ|x|2 and then send δ → 0 to check that |x|2 is a
valid test function), and then using Gronwall’s inequality.

For the bound p ≤ ph, we can multiply equation (1.4) against (p− ph)+ to obtain∫
Rd

d

dt

1

2
(p− ph)

2
+ − (p− ph)+|∇p|2 ≤

∫
Rd

γp(p− ph)+∆p

where we have used the fact that each Gi ≤ 0 whenever p ≥ ph. After integrating by parts and
dropping a good term, we see that∫

Rd

d

dt

1

2
(p− ph)

2
+ + (γ − 1)(p− ph)+|∇p|2 ≤ 0,

and the result follows.
□

The following Lemma will play a crucial role in our AB estimates.

Lemma 2.3. If ζ : [0,∞) → R is an increasing function such that ζ is C1 on (0,∞) and
η(0) = 0, then ∫

QT

ρζ ′(p)|∇p|2 ≤ ζ(ph)
(
∥ρ0∥L1(Rd) +B∥ρ∥L1(QT )

)
.

Proof. Integrating (1.3) against ζ(p), we see that∫
Rd

ζ(p)∂tρ+ ρζ ′(p)|∇p|2 =
∫
Rd

ρη(p)G.

Note that ζ(p)∂tρ = ζ(p)
γp1−γ ∂tp. If we set ζ̄(a) =

∫ a
0

ζ(a)
γa1−γ da, then it follows that∫

Rd

ρζ ′(p)|∇p|2 + d

dt
(ζ̄(p)) =

∫
Rd

ρζ(p)G.

Integrating with respect to time, we get∫
Rd×{T}

ζ̄(p) +

∫
QT

ρζ ′(p)|∇p|2 =
∫
Rd

ζ̄(p0) +

∫
QT

ρζ(p)G.

Since ζ is positive and increasing, we have ζ(p) ≤ ζ(ph) and ζ̄(p) ≤ ζ(ph)p
1
γ = ζ(ph)ρ. The result

now follows. □

For the nutrient equation, we have the following estimates that are standard for the heat
equation

Lemma 2.4. For any time T > 0,

(2.5) ∥n∥W 1,∞({T}×Rd) ≤ ∥n0∥W 1,∞({T}×Rd) + ∥ρ∥L∞(QT )∥n∥L3([0,T ];L∞(Rd))T
1/3

ℓ∑
i=1

βi

(2.6) ∥∇n∥2L2({T}×Rd) + ∥∂tn∥2L2(QT ) ≲ ∥∇n0∥2L2(Rd) + ∥n∥2L2(QT )∥ρ∥
2
L2(QT )

The next estimate is essentially taken directly from [DP21]. We reproduce the argument here
since we are in the case of multiple populations, however, the differences are relatively minor.
For notational convenience we will adopt the shorthand

(2.7) u := −γ(∆p+G).
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With this shorthand, equation (1.4) now reads

(2.8) ∂tp− |∇p|2 + pu = 0.

Proposition 2.5. For any time T > 0 there exists a constant C(T ) such that

(2.9)

∫
Rd×{T}

|∇p|2 +
∫
QT

p|D2p|2 ≤ C(T ).

For any increasing function η : R → R and m ∈ [2, 4]

(2.10)

∫
QT

η′(p)|∇p|m ≲ 1 + ∥ η(p)2

pη′(p)
2m−4

4

∥
L

m
4−m (QT )

( ∫
QT

p|∆p|2 + p|D2p|2
)
.

Proof. Integrating equation (2.8) against 1
γu, we get

1

γ

∫
QT

u∂tp− u|∇p|2 + pu2 = 0.

Note that − 1
γu|∇p|

2 = G|∇p|2 +∆p|∇p|2. Integrating by parts, we see that∫
QT

∆p|∇p|2 =
∫
QT

2p|D2p|2 + 2p∇∆p · ∇p =
∫
QT

2p|D2p|2 − 2∆p|∇p|2 − 2p|∆p|2.

Hence, we obtain the identity,∫
QT

∆p|∇p|2 = 2

3

∫
QT

p|D2p|2 − p|∆p|2.

Expanding p|∆p|2 = 1
γ2u

2 − 2
γ puG+ pG2, our combined work gives us

1

γ

∫
QT

u∂tp+ γG|∇p|2 + (1− 2

3γ
)pu2 − 4

3
puG+

2γ

3
pG2 +

2γ

3
p|D2p|2 ≤ 0.

Applying Young’s inequality to puG, we can conclude that for any γ ≥ 1

(2.11)

∫
QT

1

γ
u∂tp+

1

γ
pu2 + p|D2p|2 ≲

∫
QT

pG2 +G|∇p|2

Now we turn our attention to the time derivative term. We see that∫
QT

1

γ
u∂tp =

∫
QT

−G∂tp−∆p∂tp = ∥∇p(T, ·)∥2L2(Rd) − ∥∇p0∥2L2(Rd) −
∫
QT

G∂tp.

Recall that G =
∑ℓ

i=1 ciGi(p, n) where ci satisfy (2.1). We then see that

G∂tp =

ℓ∑
i=1

ci
( d
dt
Ḡi(p, n)− ∂nḠi(p, n)∂tn

)
,

where Ḡi : R2 → R is defined as Ḡi(p, n) :=
∫ p
0 Gi(a, n) da. Hence,∫

QT

G∂tp =
ℓ∑

i=1

∫
QT

d

dt

(
ciḠi(p, n)

)
− ci∂nḠi(p, n)∂tn− Ḡi(p, n)∂tci.
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Using (2.1), we can now estimate

(2.12)
∣∣∣ ∫

QT

G∂tp
∣∣∣ ≤ ℓ∑

i=1

∥Gi∥L∞(R2)∥p0 + p(T, ·)∥L1(Rd) + ∥∂nGi∥L∞(R2)∥p∥L2(QT )∥∂tn∥L2(QT )

+

ℓ∑
i=1

∣∣∣ ∫
QT

Ḡi(p, n)
(
∇ci · ∇p+ ciGi − ci

∑
j

cjGj

)∣∣∣.
For the final integral we want to remove derivatives from ci. Integrating by parts and then using
Young’s inequality, we get∫

QT

Ḡi(p, n)∇ci · ∇p =
∫
QT

ci(
1

γ
u+G)Ḡi(p, n)− ciGi(p, n)|∇p|2

≤
∫
QT

ci
1

γ
pu2 +

1

γ

Ḡi(p, n)
2

p
+GḠi(p, n)− ciGi(p, n)|∇p|2.

The first result now follows from combining the previous line with (2.11) and (2.12).
For the second result, we integrate by parts and then use Young’s inequality to get∫

QT

η′(p)|∇p|m = −
∫
QT

η(p)(∆p|∇p|m−2 + (m− 2)|∇p|m−4D2p : ∇p⊗∇p)

≤ 1

2

∫
QT

ap|∆p|2 + a(m− 2)p|D2p|2 + a−1(m− 1)
η(p)2

p
|∇p|2m−4

for some constant a. After applying Holder’s inequality we obtain∫
QT

η′(p)|∇p|m ≲ a∥ η(p)2

pη′(p)
2m−4

4

∥
L

m
4−m (QT )

∥η′(p)|∇p|m∥
2m−4

m

L1(QT )
+ a−1

( ∫
QT

p|∆p|2 + p|D2p|2
)
.

Since 2m−4
m ≤ 1 for m ∈ [2, 4], it follows that∫

QT

η′(p)|∇p|m ≲ 1 + ∥ η(p)2

pη′(p)
2m−4

4

∥
L

m
4−m (QT )

( ∫
QT

p|∆p|2 + p|D2p|2
)
.

as desired.
□

The rest of this section will be building towards the weighted L1 bounds on γ(∆p + G) (c.f.
Proposition 2.10). Most of the effort will be in establishing weighted L2 AB type estimates on
γ(∆p + G)− which is equivalent to estimating u2+. Our estimate of u2+ is a modification of the

estimate from [GPŚG19]. Instead of directly estimating u2+, we consider the weighted quantity
ω(p)u2+. We shall require that our weight ω : R → R satisfies the following properties

(W1) ω is nonnegative, increasing, and concave.
(W2) ω(a) ≤ γaω′(a) for all a ∈ [0, ph].

(W3)
∫ ph
0

ω(a)
a da <∞.

We will keep the weights abstract until our L1 estimate, Proposition 2.10, where we will finally
fix a choice.

Let us note that the main advantage of working with these weaker weighted quantity is that
we can have far less restrictive structural assumptions on the growth terms and our estimates will
hold in the incompressible limit γ → ∞. In addition, the calculation itself will be a bit simpler
since we do not need to include a localizing function (more precisely, one can think of ω(p) as
a special choice of a localizing function). Nonetheless, the calculation is still quite complicated
and will be separated into a few different steps. Readers who are just interested in the bound
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itself can skip to the statements of Propositions 2.9 and more importantly 2.10. Readers who
are interested in the argument itself will be “rewarded” with many “fun” (tedious) applications
of integration by parts and Young’s inequality.

Lemma 2.6. Let f : R → R be a C2 convex increasing function such that f(a) = 0 for all a ≤ 0.
If we let f∗ denote the convex conjugate of f , then

(2.13)
d

dt

∫
Rd

1

γ
ω(p)f(u) +

∫
Rd

ω(p)f∗(f ′(u))(
1

γ
u+G) + pω(p)f ′′(u)|∇u|2

≤
∫
Rd

Gf(u)(
2

γ
ω(p)− pω′(p)) + ω(p)f ′(u)(2∇G · ∇p− ∂tG)

Remark 2.7. Rather than directly work with f(u) = u2+ we instead consider a more generic
function f , which makes it easier to see when an integration by parts will be useful and helps us
see why we will eventually be forced into the choice f(u) = u2+.

Proof. Differentiating in time and using (1.4), we have

d

dt

∫
Rd

1

γ
ω(p)f(u) =

∫
Rd

1

γ
ω′(p)[|∇p|2 − pu]f(u) + ω(p)f ′(u)

1

γ
∂tu.

Using (1.4) again, we see that

1

γ
∂tu = ∆(pu)−∆|∇p|2 − ∂tG.

Expanding the terms with the Laplacian, we get

1

γ
∂tu = −(

1

γ
u+G)u+ 2∇u · ∇p+ p∆u− 2|D2p|2 + 2∇(

1

γ
u+G) · ∇p− ∂tG

Hence, after some rearranging, we have shown that

(2.14)
d

dt

∫
Rd

1

γ
ω(p)f(u) +

∫
Rd

ω(p)uf ′(u)(
1

γ
u+G) + 2ω(p)f ′(u)|D2p|2

=

∫
Rd

1

γ
ω′(p)

(
|∇p|2−pu

)
f(u)+ω(p)f ′(u)

(
2∇u ·∇p+p∆u+2∇(

1

γ
u+G) ·∇p

)
−ω(p)f ′(u)∂tG

Now we want to move spatial derivatives off of u. Moving f ′(u) inside the parentheses, we see
that the second term on the right hand side of (2.14) is equal to∫

Rd

ω(p)
(
2(1 +

1

γ
)∇f(u) · ∇p+ p∆f(u)− pf ′′(u)|∇u|2 ++2f ′(u)∇G · ∇p

)
Integrating by parts, the previous line is equal to

(2.15)

∫
Rd

f(u)∆(pω(p))− 2(1 +
1

γ
)f(u)∇ · (ω(p)∇p)− pω(p)f ′′(u)|∇u|2 + 2ω(p)f ′(u)∇G · ∇p

Now we expand ∆(pω(p)) = ∇ · (ω(p)∇p) +∇ · (pω′(p)∇p) to see that (2.15) is equal to

(2.16)

∫
Rd

−(1+
2

γ
)f(u)∇·(ω(p)∇p)+f(u)∇·(pω′(p)∇p)−pω(p)f ′′(u)|∇u|2+2ω(p)f ′(u)∇G·∇p
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Plugging this back into (2.14) and rearranging, we have

(2.17)
d

dt

∫
Rd

1

γ
ω(p)f(u) +

∫
Rd

ω(p)uf ′(u)(
1

γ
u+G) + 2ω(p)f ′(u)|D2p|2 + ω(p)f ′(u)∂tG

=

∫
Rd

1

γ
ω′(p)

(
|∇p|2 − pu

)
f(u)− (1 +

2

γ
)f(u)∇ · (ω(p)∇p)

+

∫
Rd

f(u)∇ · (pω′(p)∇p)− pω(p)f ′′(u)|∇u|2 + 2ω(p)f ′(u)∇G · ∇p

Expanding the terms with the divergence operator, we get

(2.18)
d

dt

∫
Rd

1

γ
ω(p)f(u) +

∫
Rd

ω(p)uf ′(u)(
1

γ
u+G) + 2ω(p)f ′(u)|D2p|2 + ω(p)f ′(u)∂tG

=

∫
Rd

1

γ
ω′(p)

(
|∇p|2 − pu

)
f(u) + (1 +

2

γ
)f(u)ω(p)(

1

γ
u+G)− 2

γ
f(u)ω′(p)|∇p|2

+

∫
Rd

f(u)(pω′′(p)|∇p|2 − pω′(p)(
1

γ
u+G))− pω(p)f ′′(u)|∇u|2 + 2ω(p)f ′(u)∇G · ∇p

Combining similar terms and rearranging, we get

(2.19)
d

dt

∫
Rd

1

γ
ω(p)f(u) +

∫
Rd

ω(p)(uf ′(u)− f(u))(
1

γ
u+G) + 2ω(p)f ′(u)|D2p|2 + pω(p)f ′′(u)|∇u|2

=

∫
Rd

2

γ

(1
γ
ω(p)− pω′(p)

)
uf(u) +Gf(u)(

2

γ
ω(p)− pω′(p)) + f(u)|∇p|2

(
pω′′(p)− 1

γ
ω′(p)

)
+

∫
Rd

ω(p)f ′(u)(2∇G · ∇p− ∂tG)

Thanks to our assumptions on f and ω the terms 2ω(p)f ′(u)|D2p|2, 2
γ

(
1
γω(p)−pω

′(p)
)
uf(u) and

f(u)|∇p|2
(
pω′′(p)− 1

γω
′(p)

)
are all terms with favorable signs. Dropping these terms, we get

(2.20)
d

dt

∫
Rd

1

γ
ω(p)f(u) +

∫
Rd

ω(p)
(
uf ′(u)− f(u)

)
(
1

γ
u+G) + pω(p)f ′′(u)|∇u|2

≤
∫
Rd

Gf(u)(
2

γ
ω(p)− pω′(p)) + ω(p)f ′(u)(2∇G · ∇p− ∂tG)

The result now follows from the identity uf ′(u)− f(u) = f∗(f ′(u)).
□

In the next Lemma, we tackle the estimate of the term (∂tG − 2∇G · p). This term is quite
annoying since it has the form of a transport equation along −2∇p instead of −∇p. Ultimately,
we would like to estimate this term in such a way that there are no derivatives on the ratio
variables ci.

Lemma 2.8. There exists a constant C depending only on T and the initial data such that for
any θ > 0

(2.21)

∫
QT

ω(p)f ′(u)(2∇G · ∇p− ∂tG) ≤ C(1 + θ−1) +

∫
QT

θω(p)f ′(u)2

+

∫
QT

1

2
pω(p)f ′′(u)2|∇u|2 + ω(p)f ′(u)G(

1

γ
u+G) + uf ′(u)pω(p)∂pG.
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Proof. We recall that G =
∑ℓ

i=1 ciGi(p, n). Hence,

2∇G · ∇p =
ℓ∑

i=1

2∇ci · ∇pGi(p, n) + 2ci∂pGi(p, n)|∇p|2 + 2ci∂nGi(p, n)∇p · ∇n

and

∂tG =
ℓ∑

i=1

∂tciGi(p, n) + ci∂pGi(p, n)∂tp+ ci∂nGi(p, n)∂tn.

Using equation (2.1), we have

(2.22) 2∇G · ∇p− ∂tG =

ℓ∑
i=1

∇ci · ∇pGi(p, n) + 2ci∂pGi(p, n)|∇p|2 + 2ci∂nGi(p, n)∇p · ∇n

+ ci
(
G−Gi(p, n)) + ci∂pGi(p, n)∂tp− ci∂nGi(p, n)∂tn

Using equation (1.4) and grouping similar terms, we get

(2.23) 2∇G · ∇p− ∂tG =

ℓ∑
i=1

∇ci · ∇pGi(p, n) + ci∂pGi(p, n)
(
|∇p|2 + pu

)
+ ci∂nGi(p, n)(2∇p · ∇n− ∂tn) + ci(G−Gi(p, n))Gi(p, n)

Now we are ready to begin estimating. Note that

ℓ∑
i=1

ci(G−Gi)Gi = (
ℓ∑

i=1

ciGi)
2 −

ℓ∑
i=1

ciG
2
i .

Since
∑ℓ

i=1 ci = 1, we can use Jensen’s inequality to conclude that
∑ℓ

i=1 ci(G−Gi(p, n))Gi(p, n) ≤
0. Hence, returning to our integral, we have

(2.24)

∫
QT

ω(p)f ′(u)(2∇G · ∇p− ∂tG) ≤

ℓ∑
i=1

∫
QT

ω(p)f ′(u)
(
ci∂nGi(p, n)(2∇p ·∇n−∂tn)+ ci∂pGi(p, n)(|∇p|2+pu)+Gi(p, n)∇ci ·∇p

)
.

Now we want to integrate by parts in the final term to eliminate the bad quantity ∇ci. After
doing so, the second line of (2.25) becomes

ℓ∑
i=1

∫
QT

ciω(p)f
′(u)

(
∂nGi(p, n)(∇p·∇n−∂tn)+∂pGi(p, n)pu−Gi(p, n)∆p

)
−ciGi(p, n)∇p·∇(ω(p)f ′(u))

Using ∂nG and ∂pG as shorthands for
∑ℓ

i=1 ci∂nGi(p, n) and
∑ℓ

i=1 ci∂pGi(p, n) respectively, we
can rewrite the previous line as∫

QT

ω(p)f ′(u)
(
(∇p · ∇n− ∂tn)∂nG+ pu∂pG−G∆p

)
−G∇p · ∇(ω(p)f ′(u))

After replacing −∆p by 1
γu+G and expanding ∇(ω(p)f ′(u)), our combined work gives us

(2.25)

∫
QT

ω(p)f ′(u)(2∇G · ∇p− ∂tG) ≤∫
QT

ω(p)f ′(u)
(
(∇p·∇n−∂tn)∂nG+γpu∂pG+(

1

γ
u+G)G

)
−Gω′(p)f ′(u)|∇p|2−Gω(p)f ′′(u)∇p·∇u.
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Although −Gω′(p)f ′(u)|∇p|2 appears to be a good term, we also want to handle the case
where G can be negative. Let B = maxi∈{1,...,ℓ} sup(p,n)∈[0,∞)2 |Gi(p, n)|. Using the inequal-

ity −Gω′(p)f ′(u)|∇p|2 ≤ Bω′(p)f ′(u)|∇p|2 and then integrating by parts, we get

(2.26)

∫
QT

ω(p)f ′(u)(2∇G · ∇p− ∂tG) ≤∫
QT

ω(p)f ′(u)
(
(∇p · ∇n− ∂tn)∂nG+ pu∂pG+ (

1

γ
u+G)G

)
− (G+B)ω(p)f ′′(u)∇p · ∇u.

Now we can use Young’s inequality to obtain

(2.27)∫
QT

ω(p)f ′(u)(2∇G·∇p−∂tG) ≤
∫
QT

θ−1ω(p)∂nG(|∇p|4+|∇n|4+|∂tn|2)+|∇p|2 (G+B)2ω(p)

2p

+

∫
QT

1

2
pω(p)f ′′(u)2|∇u|2 + θω(p)f ′(u)2 + ω(p)f ′(u)G(

1

γ
u+G) + uf ′(u)pω(p)∂pG.

Our estimates in Lemmas 2.3-2.4 and Proposition 2.5 imply that all of the terms in the first line
are bounded and only depend on the initial data and T . Hence, the result follows. □

At last we obtain the following AB type estimate.

Proposition 2.9. There exists a constant Cγ(T ) depending only on T, γ, and the initial data,
such that

(2.28)

∫
QT

ω(p)u2+ ≤ Cγ(T ).

If in addition G satisfies assumption (G4), then Cγ(T ) = C(T ) can be taken independently of γ.

Proof. Combining Lemmas 2.6 and 2.8, there exists a constant C > 0 depending only on the
initial data and T such that for any θ > 0

(2.29)
d

dt

∫
Rd

1

γ
ω(p)f(u) +

∫
Rd

ω(p)f∗(f ′(u))(
1

γ
u+G) + pω(p)f ′′(u)(1− 1

2
f ′′(u))|∇u|2

≤ C(1+θ−1)+

∫
Rd

Gf(u)(
2

γ
ω(p)−pω′(p))+θω(p)f ′(u)2+ω(p)f ′(u)G(

1

γ
u+G)+uf ′(u)pω(p)∂pG.

Since we need 1− 1
2f

′′(u) > 0, the fastest growing choice for f is to take f(u) = u2+. Plugging in
this choice, we get

(2.30)
d

dt

∫
Rd

1

γ
ω(p)u2+ +

∫
Rd

ω(p)u2+(
1

γ
u+G)− 2u2+pω(p)∂pG

≤ C(1 + θ−1) +

∫
Rd

Gu2+(
4

γ
ω(p)− pω′(p)) + 4θω(p)u2+ + 2G2ω(p)u+.

We use Young’s inequality to get 2G2ω(p)u+ ≤ θ−1G4ω(p)+θω(p)u2+ and Gu2+
4
γ ≤ 2

3γu
3
++

64
3 |G|

3.

Relying on the fact that ω(p) ∈ L1(QT ) and G is bounded, we can conclude that

(2.31)
d

dt

∫
Rd

1

γ
ω(p)u2+ +

∫
Rd

ω(p)u2+
( 1

3γ
u+G

)
− 2u2+pω(p)∂pG+Gu2+pω

′(p)

≤ C ′(1 + θ−1) +

∫
Rd

5θω(p)u2+

for some constant C ′. Since concavity implies that pω′(p) ≤ ω(p), the first result now follows
from Gronwall’s inequality and our assumptions on the initial data.
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For the second result, if assumption (G4) holds, then we can see from (2.31) that there exists
some ϵ > 0 independent of γ such that

(2.32)
d

dt

∫
Rd

1

γ
ω(p)u2+ +

∫
Rd

ϵω(p)u2+ ≤ C ′(1 + θ−1) +

∫
Rd

5θω(p)u2+.

By choosing θ ≤ ϵ/10, we obtain

(2.33)
d

dt

∫
Rd

1

γ
ω(p)u2+ +

∫
Rd

ϵω(p)u2+ ≤ C ′(1 + ϵ−1)

and the second result now follows.
□

We have at last reached the final estimate of this section where we provide a weighted L1

bound on |u|. Crucially, this bound controls both the positive and negative part of u, which will
allow us to construct both the forward and backward Lagrangian flows along −∇p in the next
section.

Proposition 2.10. There exists a constant Cγ(T ) depending only on T, γ and the initial data
such that

(2.34)

∫
QT

ρ|u|+
∫
Rd×{T}

ρ log(1 +
1

p
) ≤ Cγ(T ).

Furthermore, if G satisfies condition (G4) and the initial data satisfies (ID5), then for any
λ′ ∈ (0, 1/2) ∩ (0, λ] there exists a constant C(T ) that is independent of γ ∈ [1,∞) such that

(2.35)

∫
QT

ρ log(1 +
1

p
)1−λ′ |u|+

∫
Rd×{T}

ρ log(1 +
1

p
)λ

′ ≤ C(T )

where λ is the constant in (ID5).

Proof. Let u− = min(u, 0) and let η : R → R be a nonnegative increasing function that we will
choose at the end. Expanding |u| = u+ + |u−| and using Young’s inequality, we see that∫

QT

ρη(p)1/2|u| ≤
∫
QT

1

2
ρ+

1

2
ρη(p)u2+ + ρη(p)1/2|u−|.

We can also write∫
QT

ρη(p)1/2|u−| =
∫
QT

η(p)1/2ρu+ − η(p)1/2ρu ≤
∫
QT

1

2
ρη(p)u2+ +

1

2
ρ− ρη(p)1/2u,

hence,

(2.36)

∫
QT

ρη(p)1/2|u| ≤
∫
QT

1

2
ρ+

1

2
ρη(p)u2+ − ρη(p)1/2u.

It remains to estimate −
∫
QT

ρuη(p)1/2.

Using equation (1.4), it follows that

−
∫
QT

ρuη(p)1/2 =

∫
QT

ρη(p)1/2
∂tp− |∇p|2

p
=

∫
QT

−ρ( d
dt
ζ(p)−∇ζ(p) · ∇p)

where ζ : [0,∞) → R is the antiderivative ζ(a) = −
∫ a
1

η(b)1/2

b db. Integrating by parts, we get∫
Rd×{T}

ρζ(p)−
∫
QT

ρuη(p)1/2 =

∫
Rd

ρ0ζ(p0)−
∫
QT

ζ(p)
(
∇ · (ρ∇p)− ∂tρ

)
=

∫
Rd

ρ0ζ(p0) +

∫
QT

ρζ(p)G
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Combining this with (2.36), we have

(2.37)

∫
Rd×{T}

ρζ(p) +

∫
QT

ρη(p)1/2|u| ≤
∫
Rd

ρ0ζ(p0) +

∫
QT

ρζ(p)G+
1

2
ρ+

1

2
ρη(p)u2+

Now we are ready to make choices for η. For γ ∈ [1,∞) the weight ω(p) = p
1
γ = ρ satisfies

the conditions (W1-W3), hence we can choose η(a) = 1 to obtain

(2.38)

∫
Rd×{T}

ρ log(1/p) +

∫
QT

ρ|u| ≤
∫
Rd

ρ0 log(1/p0) +

∫
QT

ρ log(1/p)G+
1

2
ρ+

1

2
ρu2+

Hence, Gronwall’s inequality, Proposition 2.9, and the identity log(1/p) = log(1+1/p)−log(1+p)
imply the existence of a constant Cγ(T ) such that

(2.39)

∫
QT

ρ|u|+
∫
Rd×{T}

ρ log(1 +
1

p
) ≤ Cγ(T ).

To get a bound that also is valid in the limit γ → ∞, let us choose some λ′ ∈ (0, λ] ∩ (0, 1/2)

where λ > 0 is the constant in assumption (ID5). We then choose η(a) = log(1+ 1
p)

2(λ′−1), which

gives ζ(a) = −
∫ a
1

log(1+ 1
b
)λ

′−1

b db. Integrating by parts, we see that

ζ(a) = − log(a) log(1 +
1

a
)λ

′−1 + (1− λ′)

∫ a

1

log(b)

b+ b2
log(1 +

1

b
)λ

′−2

= log(
1

a
) log(1 +

1

a
)λ

′−1 + (1− λ′)ζ(a) + (1− λ′)

∫ a

1

log(1 + 1
b )

λ′−1

b
(

log(b)

(1 + b) log(1 + 1
b )

+ 1)

Thus,

λ′ζ(a) = log(1/a) log(1 +
1

a
)λ

′−1 + (1− λ′)

∫ a

1

log(1 + 1
b )

λ′−1

b
(
log(b) + (1 + b) log(1 + 1/b)

(1 + b) log(1 + 1
b )

)

= log(1+
1

a
)λ

′ − log(1+a) log(1+
1

a
)λ

′−1+(1−λ′)
∫ a

1

log(1 + 1
b )

λ′−1

1 + b
+

log(1 + 1
b )

λ′−2 log(1 + b)

b(1 + b)

Hence,

ζ(a) =
1

λ′
log(1 +

1

a
)λ

′
+ h(a)

where h is a function that is bounded on [0, ph]. Thus,

(2.40)

∫
Rd×{T}

ρ log(1 +
1

p
)λ

′
+

∫
QT

ρ|u| ≲ ∥ρ∥L∞([0,T ];L1(Rd) +

∫
Rd

ρ0 log(1 +
1

p0
)λ

′
+∫

QT

ρ log(1 +
1

p
)|G|+ 1

2
ρ log(1 +

1

p
)2(λ

′−1)u2+

In order to use Proposition 2.9 to bound ρ log(1+ 1
p)

2(λ′−1)u2+, we need to check to see if there

exists a weight ω(p) satisfying (W1-W3) such that Cω(p) ≥ ρ log(1+ 1
p)

2(λ′−1) for some constant

C. We shall choose ω(p) = p
1
γ z(p) = ρz(p) where z is a nonnegative increasing function. To

ensure that ω is concave we need

(2.41) ω′′(a) =
1

γ
a

1
γ
−2(

(
1

γ
− 1)z(a) + 2az′(a) + γa2z′′(a)) ≤ 0
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for all a ∈ (0, ph]. We now consider the choice z(a) = log(ξ(a)−1)2(λ
′−1) where ξ : [0,∞) → [0,∞)

is an increasing concave function that is bounded above by e−6 such that ξ(a) = a on [0, e
−6

2 ].
Testing this choice, we get

(2.42)

(
1

γ
−1)z(a)+2az′(a)+γa2z′′(a) = (

1

γ
−1) log(ξ(a)−1)2(λ

′−1)+4(1−λ′)aξ
′(a)

ξ(a)
log(ξ(a)−1)2λ

′−3

−2γ(1−λ′)(aξ
′(a)

ξ(a)
)2 log(ξ(a)−1)2λ

′−3
(
1−(3−2λ′) log(ξ(a)−1)−1

)
+2γ(1−λ′)a

2ξ′′(a)

ξ(a)
log(ξ(a)−1)2λ

′−3.

Exploiting the concavity of ξ and the upper bound of e−6, it follows that

(2.43)

(
1

γ
− 1)z(a) + 2az′(a) + γa2z′′(a) ≤ (

1

γ
− 1) log(ξ(a)−1)2(λ

′−1) +
2

3
(1− λ′) log(ξ(a)−1)2(λ

′−1)

− γ(1− λ′)(
aξ′(a)

ξ(a)
)2 log(ξ(a)−1)2λ

′−3,

which is nonpositive for all γ ≥ 3.
It is now easy to check that the remaining properties (W1-W3) are satisfied by ω(p) =

p
1
γ log(ξ(a)−1)2(λ

′−1) = ρ log(ξ(a)−1)2(λ
′−1). Since ξ is increasing and ξ(a) = a on [0, e

−6

2 ] it also

follows that there exists a constant C > 0 such that ρ log(1 + 1
p)

2(λ′−1) ≤ Cω(p). Thus, (2.35)

now follows from (2.40), Gronwall’s inequality, and Proposition 2.9 (note that (2.35) also holds
for γ ∈ [1, 3] since (2.34) is a strictly stronger bound and Cγ(T ) only blows up as γ → ∞). □

3. Stability of Lagrangian flows

Once again, in this Section, we will assume that we are working with smooth solutions
(ρ1, . . . , ρℓ, p, n) to the system (1.1-1.2). Thanks to the smoothness of p, the regular Lagrangian
flow along −∇p must exist by classic Cauchy-Lipschitz theory. Thus, (ρ1, . . . , ρℓ, p, n) is already
a complete Lagrangian solution in the sense of Definition 1.1. Hence, we can freely assume the
existence of the forward and backward flow maps X,Y satisfying equations (1.7) and (1.8) re-
spectively. The main purpose of this Section is to use our bounds from Section 2 to show that
X and Y satisfy certain quantitative stability bounds (c.f. Proposition 3.5).

Our stability bounds will compareX and Y to the forward and backward flows S,Z along some
vector field V ∈ L∞

loc([0,∞);L2(Rd)) with an associated nonnegative density µ ∈ Cloc([0,∞);L1(Rd)∩
L∞(Rd)). Specifically, we shall assume that S and Z satisfy the flow equations

(3.1) S(t, s, x) = x+

∫ s+t

s
V (τ, S(τ, s, x)) dτ for a.e x ∈ spt(µ(s, x)),

(3.2) Z(t, s, x) = x−
∫ s

s−t
V (τ, Z(τ, s, x)) dτ for a.e x ∈ spt(µ(s, x)),

and there exists a constant C > 0 such that

(3.3) e−tCµ(s+ t, ·) ≤ S(t, s, ·)#µ(s, ·) ≤ etCµ(s+ t, ·)
and

(3.4) e−tCµ(s− t, ·) ≤ Z(t, s, ·)#µ(s, ·) ≤ etCµ(s− t, ·).
We will then show that the difference between X and S ( respectively Y and Z) on pmin(µ, ρ)
can be controlled in terms of the difference between V and −∇p.
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Remark 3.1. Since we only assume that V ∈ L∞
loc([0,∞);L2(Rd)) there is no guarantee that one

can find S,Z, and µ satisfying the properties (3.1-3.4). Nonetheless, when we use the results of
this Section, it will always end up being in cases where we already know that the analogues of
S,Z, µ exist and satisfy the desired properties.

Let us emphasize that the estimates in this section are heavily inspired by the quantitative
estimates on Lagrangian flows from [CdL08]. The insight in [CdL08] was that certain logarithmic
quantities related to the flow maps could be controlled with just Sobolev regularity on the flow
field. Here we introduce doubly logarithmic quantities that can be controlled without needing
to bound D2p in any Lr space. Specifically, our quantities take the form
(3.5)

IT (t, s) :=

∫
Rd

ρ̄(s, x) log
(
1 + p(s+ t,X(t, s, x)) log

(
1 +

min(|X(t, s, x)− S(t, s, x)|, 1)
δ2T

))
dx,

and
(3.6)

JT (t, s) :=

∫
Rd

ρ̄(s, x) log
(
1 + p(s− t, Y (t, s, x)) log

(
1 +

min(|Y (t, s, x)− Z(t, s, x)|, 1)
δT

))
dx,

where

(3.7) ρ̄ := min(ρ, µ), δT =
(∫

QT

µ|∇p+ V |2
)1/2

.

In what follows, we will show that our bounds on p|D2p|2 and γρ|u| from Section 2 are sufficient
to control the above integrals. In particular, our control on p|D2p|2 will replace the usual need
for Sobolev regularity on ∇p, while our control on γρ|u| will help us make sure that we can keep
the factor of p attached to p|D2p|2 in our calculations. We will then show that bounds on I and
J can be used to bound the differences sups≤T supt≤(T−s)

∫
ρ̄(s, x)|X(t, s, x) − S(t, s, x)| dx and

sups≤T supt≤s

∫
ρ̄(s, x)|Y (t, s, x)− Z(t, s, x)| dx in terms of δT .

Before we get into the main results of this section, we review some important properties of
maximal functions.

3.1. Maximal functions. The maximal functions

(3.8) f(t, x) := sup
r>0

1

|Br|

∫
Br(x)

|∇p(t, y)|2 + p(t, y)|D2p(t, y)| dy,

and

(3.9) g(t, x) := sup
r>0

1

|Br|

∫
Br(x)

|∇p(t, y)| dy.

will play an important role in our calculations. It is a classical fact [Ste16] that for any r ∈ (1,∞]

(3.10) ∥f∥Lr({t}×Rd) ≲r,d ∥∇p∥2L2r({t}×Rd) + ∥pD2p∥Lr({t}×Rd)

and

(3.11) ∥g∥Lr({t}×Rd) ≲r,d ∥∇p∥Lr({t}×Rd).

f and g will show up in our estimates through the following crucial bound.

Lemma 3.2. Given any two points x1, x2 ∈ Rd and any time t ≥ 0, we have

(3.12) p(t, x1)|∇p(t, x1)−∇p(t, x2)| ≤ |x1 − x2|
(
f(t, x1) + f(t, x2) + g(t, x1)

2 + g(t, x2)
2
)
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Proof. By the triangle inequality

p(t, x1)|∇p(t, x1)−∇p(t, x2)| ≤ |p(t, x1)∇p(t, x1)−p(t, x2)∇p(t, x2)|+|p(t, x1)−p(t, x2)||∇p(t, x2)|.

Noting that |D(p∇p)| ≤ |∇p|2 + p|D2p|, one can use standard maximal function theory [Ste16]
to obtain the bounds

|p(t, x1)∇p(t, x1)− p(t, x2)∇p(t, x2)| ≤ |x1 − x2|(f(t, x1) + f(t, x2))

and

|p(t, x1)− p(t, x2)| ≤ |x1 − x2|(g(t, x1) + g(t, x2)|.

The result now follows from Young’s inequality and the fact that |∇p| ≤ g pointwise everywhere.
□

3.2. Quantitative stability. We are now ready to prove the main results of this section. We
begin with some basic estimates on the flow maps and their pushforwards.

Lemma 3.3. Let B′ = maxi∈{1,...,ℓ} sup(p,n)∈[0,∞)2 |Gi(p, n)| and B = max(B′, C). where C is

the constant from (3.3). For any time s ≥ 0 and t ≤ s we have

(3.13) e−Btρ(s+ t, x) ≤ X(t, s, ·)#ρ(s, x) ≤ eBtρ(s+ t, x),

(3.14) e−Btρ(s− t, x) ≤ Y (t, s, ·)#ρ(s, x) ≤ eBtρ(s− t, x).

Furthermore, for any s, t ≥ 0

(3.15)
(∫

Rd

ρ̄(s, x)|X(t, s, x)− S(t, s, x)|2
)1/2

≤ (tetB)1/2
(
δs+t + ∥ρ1/2∇p∥L2([s,s+t]×Rd)

)
,

and for any s ≥ 0 and t ≤ s

(3.16)
(∫

Rd

ρ̄(s, x)|Y (t, s, x)− Z(t, s, x)|2
)1/2

≤ (tetB)1/2
(
δs + ∥ρ1/2∇p∥L2([s−t,s]×Rd)

)
.

Proof. Since Y (t, s, ·) is the inverse of X(t, s − t, ·) (3.14) will follow from (3.13). Using the
representation formula (1.15), it is clear that X(t, s, ·)#ρ(s, x) ≤ eBtρ(s + t, x) and e−Btρ(s +
t, x) ≤ X(t, s, ·)#ρ(s, x). The last two bounds follow from Jensen’s inequality and the pushforward
bounds. □

Most of the action in this section occurs in the following Lemma where we provide bounds on
I and J .

Lemma 3.4. For any T > 0 and any λ′ ∈ (0, 1] define

(3.17) Bλ′(T ) = ∥ρ log(1+1

p
)λ

′−1u∥L1(QT )+p
2
h+∥ρ+µ∥L2(QT )

(
1+∥∇p∥2L4(QT )+∥pD2p∥L2(QT )

)
,

we then have the estimates

(3.18) sup
s,t≤T

IT (t, s) ≤ Bλ′(2T )eBT log(1 + log(1 + δ−1
2T ))

1−λ′
,

and

(3.19) sup
s,t≤T

JT (t, s) ≤ Bλ′(T )eBT log(1 + log(1 + δ−1
T ))1−λ′

.
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Proof. We will provide the argument for the bound on I, the bound on J has a nearly identical
proof. To bound I, we will proceed by estimating its time derivative with respect to t. Since
the expressions are complicated, we will break down the calculation into smaller pieces first by

defining the inner logarithm term LX(t, s, x) := log(1 + min(|X(t,s,x)−S(t,s,x)|,1)
δ2T

).

Differentiating LX with respect to t, we see that

∂tLX(t, s, x) ≤ |∇p(s+ t,X(t, s, x)) + V (s+ t, S(t, s, x))|
δ2T + |X(t, s, x)− S(t, s, x)|

.

After an application of the triangle inequality, we can bound the previous line by

|∇p(s+ t,X(t, s, x))−∇p(s+ t, S(t, s, x))|
|X(t, s, x)− S(t, s, x)|

+
|∇p(s+ t, S(t, s, x)) + V (s+ t, S(t, s, x))|

δ2T
.

After combining these bounds with (3.12), we can conclude that

(3.20) p(s+ t,X(t, s, x))∂tLX(t, s, x) ≤ f(s+ t,X(t, s, x)) + f(s+ t, S(t, s, x))

+g(s+t,X(t, s, x))2+g(s+t, S(t, s, x))2+p(t+s,X(t, s, x))|∇p(s+t, S(t, s, x))+V (s+t, S(t, s, x))|δ−1
2T .

Next, we calculate

d

dt
p(s+t,X(t, s, x)) = ∂tp(s+t,X(t, s, x))−|∇p(s+t,X(t, s, x))|2 = u(s+t,X(t, s, x))p(s+t,X(t, s, x)),

and

d

dt
log(1+p(s+t,X(t, s, x)LX(t, s, x)) =

p(s+ t,X(t, s, x))∂tLX(t, s, x) + LX(t, s, x) d
dtp(s+ t,X(t, s, x))

1 + p(s+ t,X(t, s, x))LX(t, s, x)

=
p(s+ t,X(t, s, x))∂tLX(t, s, x)

1 + p(s+ t,X(t, s, x))LX(t, s, x)
+
LX(t, s, x)p(s+ t,X(t, s, x))u(s+ t,X(t, s, x))

1 + p(s+ t,X(t, s, x))LX(t, s, x)

Thus,

(3.21)
d

dt
log(1 + p(t+ s,X(t, s, x)LX(t, s, x)) ≤

f(s+ t,X(t, s, x)) + f(s+ t, S(t, s, x)) + g(s+ t,X(t, s, x))2 + g(s+ t, S(t, s, x))2

+p(t+s,X(t, s, x))|∇p(s+t, S(t, s, x))+V (s+t, S(t, s, x))|δ−1
2T +

LX(t, s, x)p(s+ t,X(t, s, x))u(s+ t,X(t, s, x))

1 + p(s+ t,X(t, s, x))LX(t, s, x)

Now we note that I(0, s) = 0. Using the above bounds on the t derivative of the integrand of
I, we can conclude that for any t ≥ 0

(3.22)

IT (t, s) ≤
∫
Qt

ρ̄(s, x)
(
f(s+t,X(t, s, x))+f(s+t, S(t, s, x))+g(s+t,X(t, s, x))2+g(s+t, S(t, s, x))2

+ p(t+ s,X(t, s, x))|∇p(s+ t, S(t, s, x)) + V (s+ t, S(t, s, x))|δ−1
2T

+
LX(t, s, x)p(s+ t,X(t, s, x))u(s+ t,X(t, s, x))

1 + p(s+ t,X(t, s, x))LX(t, s, x)

)
dx dt,

Using the pushforward bounds from Lemma 3.3 and changing variables in time, it follows that

(3.23)

IT (t, s) ≤ etB
∫
[s,s+t]×Rd

phδ
−1
2T µ(τ, x)|∇p(τ, x)+V (τ, x)|+

(
ρ(τ, x)+µ(τ, x)

)(
f(τ, x)+g(τ, x)2

)
dx dτ,

+ etB
∫
[s,s+t]

ρ(τ, x)
u(τ, x)p(τ, x)LX(t, s, Y (t, s+ t, x))

1 + p(τ, x)LX(t, s, Y (t, s+ t, x))
,
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where we have also used the fact that Y (t, s + t, x) is the inverse of X(t, s, x). Since LX ≤
log(1 + δ−1

2T ) and a 7→ a
1+a is an increasing function, it follows that

(3.24)

IT (t, s) ≤ etB
∫
[s,s+t]×Rd

phδ
−1
2T µ(τ, x)|∇p(τ, x)+V (τ, x)|+

(
ρ(τ, x)+µ(τ, x)

)(
f(τ, x)+g(τ, x)2

)
dx dτ,

+ etB
∫
[s,s+t]

ρ(τ, x)
|u(τ, x)|p(τ, x) log(1 + δ−1

2T )

1 + p(τ, x) log(1 + δ−1
2T )

,

Using the bounds (3.10) and (3.11) and the definition of δT , we see that

(3.25)

IT (t, s) ≲ etB∥ρu log(1 + 1

p
)λ

′−1∥L1([s,s+t]×Rd)∥log(1 +
1

p
)1−λ′ p log(1 + δ−1

2T )

1 + p log(1 + δ−1
2T )

∥L∞([s,s+t]×Rd)

+ etBph∥µ∥
1/2

L2([s,s+t]×Rd)
+ etB∥ρ+ µ∥L2([s,s+t]×Rd)

(
∥∇p∥2L4([s,s+t]×Rd) + ∥pD2p∥L2([s,s+t]×Rd)

)
.

For b > 0 large, the function log(1 + 1
a)

1−λ′ ab
1+ab is roughly maximized at a = 1/b, thus,

∥log(1 + 1

p
)1−λ′ p log(1 + δ−1

2T )

1 + p log(1 + δ−1
2T )

∥L∞([s,s+t]×Rd) ≲ log(1 + log(1 + δ−1
2T ))

1−λ′
.

The result now follows from (3.25) and the above bound.
□

Now we are ready to establish the stability property.

Proposition 3.5. If the initial data satisfies (ID1-ID3) and the growth terms satisfy (G1-G3),
then for any T ≥ 0 and λ′ ∈ (0, 1] there exists a constant Cγ,λ′(T ) depending only on the initial
data, λ′, γ, T and d such that

(3.26) sup
s≤T

sup
t≤T

∫
Rd

ρ̄(s, x)|X(t, s, x)− S(t, s, x)| ≤ Cγ,λ′(2T ) log(1 + log(1 + δ−1
T ))−λ′/2,

(3.27) sup
s≤T

sup
t≤s

∫
Rd

ρ̄(s, x)|Y (t, s, x)− Z(t, s, x)| ≤ Cγ,λ′(T ) log(1 + log(1 + δ−1
T ))−λ′/2.

Additionally, if the growth terms satisfy (G4) the initial data satisfies (ID5), and λ′ < min(1/2, λ)
where λ is the constant in (ID5), then Cγ,λ′(T ) is independent of γ.

Proof. We provide the proof for (3.27), the argument for (3.26) is essentially identical.
Given r > 0 let Dr(t, s) := {x ∈ Rd : |Y (t, s, x)− Z(t, s, x)| > r}. We can then estimate∫

Rd

ρ̄(s, x)|Y (t, s, x)−Z(t, s, x)| ≤ rph∥ρ∥L∞([0,s];L1(Rd))+

∫
Dr(t,s)

ρ̄(s, x)p(s, x)|Y (t, s, x)−Z(t, s, x)| dx

≤ rph∥ρ∥L∞([0,s];L1(Rd)) +
(∫

Dλ(t,s)
ρ̄(s, x) dx

)1/2(∫
Rd

ρ̄(s, x)|Y (t, s, x)− Z(t, s, x)|2 dx
)1/2

From Lemma 3.3, we already have a bound for
( ∫

Rd ρ̄(s, x)|Y (t, s, x)− Z(t, s, x)|2 dx
)1/2

. Thus

we focus on the other integral.
Fix some ϵ > 0 and note that Dr is contained in the union Dr,ϵ(t, s) ∪AY,ϵ(t, s) where

Dr,ϵ(t, s) := {x ∈ Dr(t, s) : p(s− t, Y (t, s, x)) > ϵ}
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and

AY,ϵ(t, s) := {x ∈ Rd : p(s− t, Y (t, s, x)) < ϵ}

Using these sets, we see that∫
Dr(t,s)

ρ̄(s, x) dx ≤ log(1+ϵ−1)−λ′
∫
AY,ϵ(t,s)

ρ̄(s, x) log(1+
1

p(s− t, Y (t, s, x))
)λ

′
dx+

∫
Dr,ϵ(t,s)

ρ̄(s, x) dx.

Pushing forward by Y in the first integral, we get∫
Dr(t,s)

ρ̄(s, x) dx ≤ etB log(1+ϵ−1)−λ′
∫
Rd

ρ(s−t, x) log(1+ 1

p(s− t, x)
)λ

′
dx+

∫
Dr,ϵ(t,s)

ρ̄(s, x) dx.

To estimate the final integral, we write∫
Dr,ϵ(t,s)

ρ̄(s, x) dx ≤ log(1+ ϵ log(1+
min(r, 1)

δT
))−1

∫
Dr,ϵ(t,s)

ρ̄(s, x) log
(
1+ ϵ log

(
1+

min(r, 1)

δT

))

≤ log(1+ϵ log(1+
min(r, 1)

δT
))−1

∫
Dr,ϵ(t,s)

ρ̄(s, x) log
(
1+p(s−t, Y (t, s, x)) log

(
1+

|Y (t, s, x)− Z(t, s, x)|
δT

))
,

where we have taken advantage of the definition of Dr,ϵ(t, s) to obtain the last inequality. Rec-
ognizing that the final integral is bounded above by JT , it follows that∫

Dλ,ϵ(t,s)
ρ̄(s, x)p(s, x)2 dx ≤ log(1 + ϵ log(1 +

min(r, 1)

δT
))−1JT (t, s).

Thus, after combining our work, we see that∫
Dr(t,s)

ρ̄(s, x) dx ≤

etB log(1+ ϵ−1)−λ′
∫
Rd

ρ(s− t, x) log(1+ 1

p(s− t, x)
)λ

′
dx+log(1+ ϵ log(1+

min(r, 1)

δT
))−1JT (t, s).

Using Proposition 2.10 and Lemma 3.4, it follows that∫
Dr(t,s)

ρ̄(s, x) dx ≲ log(1 + ϵ−1)−λ′
+ log(1 + ϵ log(1 +

min(r, 1)

δT
))−1 log(1 + log(1 + δ−1

T ))1−λ′

Now we make the choices r = δ
1/2
T and ϵ = log(1 + δ

−1/2
T )−1/2. Up to constants, the previous

line becomes

log(1 + log(1 + δ−1
T ))−λ′

Combining our work, the result follows. □

4. Compactness

In this final section, we will at last construct complete Lagrangian solutions to the system
(1.1-1.2) under our various assumptions on the initial data and structure of the growth terms
(c.f. Section 1.2). To construct these solutions, we will take a sequence of smooth solutions to
(1.1-1.2) and use our results from Sections 2 and 3 to prove that strong limit points exist and
satisfy Definition 1.1. We will first construct solutions in the case γ ∈ [1,∞) and then consider
the incompressible limit γ → ∞.
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4.1. Compactness for γ fixed. We begin with the following Proposition which guarantees
the existence of smooth solutions under certain assumptions on the initial data and growth
terms. Here the crucial property will be that the initial data is not compactly supported. Let us
emphasize that the existence of smooth solutions for PME equations with data bounded away
from zero is very well-known in the literature [Váz07]. We take an approach similar to [GPŚG19].

Proposition 4.1. Let (ρ01, . . . , ρ
0
ℓ , n

0) be initial data satisfying (ID1-ID3) and let G1, . . . , Gℓ be
growth terms satisfying (G1-G3). If (ρ01, . . . , ρ

0
ℓ , n

0) and G1, . . . , Gℓ are smooth and there exists

some δ > 0 such that
∑ℓ

i=1 ρ
0
i ≥ δe−|x|2 then there exists a smooth complete Lagrangian solution

to (1.1-1.2) with initial data (ρ01, . . . , ρ
0
ℓ , n

0) and growth terms Gi.

Proof. We can construct solutions through the following iteration scheme. To initialize the
scheme we first set ρi,0(t, x) = ρ0i (x) and n0(t, x) = n0(x) for all (t, x), then we set ρ0 =

(
∑ℓ

i=1 ρi,0), p0 = ργ0 , We then iterate by solving the following equations

(4.1) ci,m =
ρi,m
ρm

, Gm =
ℓ∑

i=1

ci,mGi(pm, nm),

(4.2) ∂tpm+1 − γ(pm+1 +
1

m
)∆pm+1 − |∇pm+1|2 = γpm+1G

m,

(4.3) ∂tρi,m+1 −∇ · (ρi,m+1∇pm+1) = ρi,m+1Gi(pm+1, nm)

(4.4) ∂tnm+1 − α∆nm+1 = −nm+1

ℓ∑
i=1

βiρi,m+1

By construction, each step of the scheme produces a smooth solution (this is clear for (4.2) and
(4.4) and we then note that (4.3) is a continuity equation with smooth initial data, smooth vector
field, and smooth source). We can also check that δγ exp(−γ|x|2 − θt) is a subsolution to (4.2)
once θ is chosen to be sufficiently large. Thus, pm(t, x) ≥ δγ exp(−γ|x|2 − θt) for all m. This
guarantees that on balls of finite radius equation (4.2) is uniformly parabolic independently of
m. From here, the convergence of the scheme to a smooth solution is well-known in the parabolic
literature folklore. □

Given initial data (ρ01, . . . , ρ
0
ℓ , n

0) satisfying (ID1-ID3) and growth terms Gi satisfying (G1-
G3), we want to use the previous Proposition to construct a sequence of smooth solutions that
will converge to a complete Lagrangian solution with the desired initial data. Let η : Rd → R be
a smooth compactly supported mollifier. For each k ∈ Z+ we define

(4.5) ρ0i,k :=
1

k
e−|x|2 + η 1

k
∗ ρ0i ,

(4.6) n0k = η 1
k
∗ n0,

and we choose Gi,k to be a sequence of smooth approximations to Gi. By Proposition 4.1, for
each k ∈ Z+, there exists a smooth solution (ρ1,k, . . . , ρℓ,k, pk, nk) to (1.1-1.2) with initial data
(ρ01,k, . . . , ρ

0
ℓ,k, n

0
k). Note that the smoothness of the variables implies that (ρ1,k, . . . , ρℓ,k, pk, nk)

is a complete Lagrangian solution to the system. Hence, we are assured the existence of the
forward and backward flow maps Xk, Yk along −∇pk satisfying all of the properties in Definition
1.1. It remains to verify that these sequences have sufficient compactness to extract limit points
and prove that the limit points are the desired complete Lagrangian solutions.
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Lemma 4.2. Fix some T ≥ 0. Both pk and nk are L2([0, T ];H1(Rd))∩C([0, T ];L2(Rd)) strongly
precompact. For each i ∈ {1, . . . , ℓ} the family ρi,k is L1(QT ) ∩ W 1,2([0, T ];H−1(Rd)) weakly
precompact.

Proof. Thanks to Proposition 2.10, we have

sup
k

∫
QT

ρk|∂tpk|+ ρk|∆pk| = sup
k

∫
QT

ρk|∇p|2 + ρkpk|uk|+
1

γ
ρk|uk|+ ρk|Gk| <∞

We can also compute

sup
k

∫
QT

|x|1/2|∇pk(t, x)|2 ≤ sup
k

∫
QT

ρk|x|2 +
|∇pk(t, x)|8/3

ρ
1/3
k

<∞.

If we define qk = p
1+ 1

γ

k , then |∂tqk| = ρk|∂tpk|, (1 + |x|1/2)|∇qk|2 = (1 + |x|1/2)ρ2k|∇pk|2 and

|∆qk| ≤ |∇ρk · ∇pk|+ ρk|∆pk|. Hence, qk is L2([0, T ];H1(Rd)) precompact.
Now we want to transfer these precompactness properties to pk. We need to be a little careful

since the transformation a 7→ a
(1+ 1

γ
)−1

is not C1. Let kj be a subsequence such that qkj is

L2([0, T ];H1(Rd)) Cauchy. Fix some ϵ > 0 and let χϵ : R → R be the characteristic function of
[0, ϵ]. We can then compute

∥∇pkj −∇pkm∥L2(QT ) ≤ ∥∇pkjχϵ(pkj )∥L2(QT ) + ∥∇pkmχϵ(pkm)∥L2(QT )

+∥∇pkj (1− χϵ(pkj ))−∇pkm(1− χϵ(pkm))∥L2(QT )

Hence,

lim
j,m→∞

∥∇pkj −∇pkm∥L2(QT ) ≤ 2 sup
j
∥∇pkjχϵ(pkj )∥L2(QT )

≤ 2ϵ1/4 sup
j
∥p−1/4

kj
∇pkj∥L2(QT ) ≲ ϵ1/4.

Hence, the pk are L2([0, T ];H1(Rd)) precompact.
To get precompactness in C([0, T ];L2(Rd)) we note that |∂tpk|2 ≤ 2|∇pk|4 + 2p2ku

2
k, hence

∂tpk is uniformly bounded in L2(QT ) thanks to Proposition 2.5. Now the precompactness in
C([0, T ];L2(Rd)) follows from the precompactness in L2([0, T ];H1(Rd)).

The precompactness of the nutrients is clear from the uniform L2 bounds on ∂tnk and ∆nk.
The weak precompactness of the ρi,k in L1(QT ) ∩W 1,2([0, T ];H−1(Rd)) follows from the bound
0 ≤ ρi,k ≤ ρk and the equation (1.1). □

Now that we have established the precompactness of the family of smooth solutions, we can
deduce the existence of a limit point (ρ1, . . . , ρℓ, p, n). In what follows, we shall assume that we
have extracted a subsequence (that we do not relabel) such that (ρ1,k, . . . , ρℓ,k, pk, nk) converges
to (ρ1, . . . , ρℓ, p, n) with the various notions of convergence identified in Lemma 4.2. We will then
show that this limit point is a complete Lagrangian solution and prove Theorem 1.3.

First we show that the maps Xk, Yk are Cauchy on the support of p.

Lemma 4.3. For any T ≥ 0,

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

ρ(s, x)|Xj(t, s, x)−Xk(t, s, x)| dx = 0.

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

ρ(s, x)|Yj(t, s, x)− Yk(t, s, x)| dx = 0.
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Proof. Thanks to the strong convergence of pk in C([0, T ];Lr(Rd)) and hence the strong conver-
gence of ρk we can replace ρ(s, x) in the above integrals with min(ρk(s, x), ρj(s, x)). If we allow
(−∇pk, ρk) and (−∇pj , ρj) to respectively play the roles of (−∇p, ρ) and (V, µ) in Proposition
3.5, the result follows from the vanishing of ∥∇pk −∇pj∥L2(QT )) as j, k → ∞. □

The strong convergence of the flow maps in Lemma 4.3 implies the existence of the forward and
backward Lagrangian flow maps X,Y along −∇p. The strong convergence guarantees that these
maps satisfy all of the properties in requirement (ii) of the definition of complete Lagrangian
solutions (i.e. the flow equations, semigroup property, and inversion formulas). Hence, we have
almost succeeded in constructing our desired solution. Before we prove Theorem 1.3, we establish
two uniqueness properties for the flow along −∇p. First we show that the flow maps X,Y have a
stability property a lá Proposition 3.5 and then we show that solutions to the continuity equation
along −∇p are unique provided that the density stays within the support of p.

Proposition 4.4. Let X and Y be the L1
loc([0,∞);L1(p2)) limits of Xk and Yk. Let V, µ, S, Z

be as in Section 3. We have the estimates

(4.7) sup
s≤T

sup
t≤T

∫
Rd

min(µ(s, x), ρ(s, x))|X(t, s, x)− S(t, s, x)| ≤ Cγ(2T ) log(1 + log(1 + δ−1
T ))−1/2,

(4.8) sup
s≤T

sup
t≤s

∫
Rd

min(µ(s, x), ρ(s, x))|Y (t, s, x)− Z(t, s, x)| ≤ Cγ(T ) log(1 + log(1 + δ−1
T ))−1/2,

where δT = ∥∇p+ V ∥L2(QT ) and Cγ(T ) is the same constant as in Proposition 3.5.

Proof. Arguing as in Lemma 4.3, it follows that∫
Rd

min(µ(s, x), ρ(s, x))|X(t, s, x)− S(t, s, x)| dx =

lim
k→∞

∫
Rd

min(µ(s, x), ρk(s, x))|Xk(t, s, x)− S(t, s, x)| dx

Choosing λ′ = 1 in Proposition 3.5, we know that

(4.9) sup
s≤T

sup
t≤T

∫
Rd

ρ̄k(s, x)|Xk(t, s, x)− S(t, s, x)| ≤ Cγ(2T ) log(1 + log(1 + δ−1
T,k))

−1/2,

where ρ̄k = min(ρk, µ) and δT,k = ∥µ1/2(∇pk+V )∥L2(QT ). Hence the first result follows from the
convergence limk→∞ δT,k = δT . The second result has the same argument. □

Proposition 4.5. Let X and Y be the L1
loc([0,∞);L1(p2)) limits of Xk and Yk. Suppose that

ν ∈ L∞
loc([0,∞);L1(Rd) ∩ L∞(Rd)) is a weak solution to the continuity equation

(4.10) ∂tν −∇ · (ν∇p) = 0,

with initial data ν0. If ν is everywhere nonnegative and

(4.11)

∫
{x∈Rd:ρ(s,x)=0}

ν(s, x) = 0

for all s ≥ 0, then X(t, s, ·)#ν(s, ·) = ν(s+ t, ·) for all s, t ≥ 0 almost everywhere in space.

Remark 4.6. This proposition gives another way to argue that X and Y are the unique for-
ward and backward flow maps along −∇p when restricted to the support of ρ (see Ambrosio’s
superposition principle [Amb08]).
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Proof. Fix a time step τ > 0 and for each k ∈ Z+, we construct the optimal transport interpolants
between ν(τk, ·) and ν(τ(k + 1), ·). Doing so, we obtain ντ , φτ , Sτ where ντ is a density such
that ντ (kτ, ·) = ν(kτ, ·) for all k, ντ , φτ are weak solutions to the continuity equation

(4.12) ∂tν
τ +∇ · (ντ∇φτ ) = 0,

and Sτ satisfies

∂tS
τ (t, s, x) = ∇φτ (s+ t, Sτ (t, s, x)), Sτ (t, s, ·)#ν(s, ·) = ν(s+ t, ·),

see for instance [San15]. Furthermore, if we define mτ = ντ∇φτ , then for any j ∈ Z+ we have∫ jτ

0

∫
Rd

|mτ |2

2ντ
= inf

(µ,b)∈Cτ

∫ τj

0

∫
Rd

|b|2

2µ

where Cτ is the space of all density-flux pairs (µ, b) ∈ L1
loc(Q∞) × L2

loc(Q∞) that are weak
solutions to the continuity equation ∂tµ+∇ · b = 0 such that µ(τk, ·) = ν(τk, ·) for all k ∈ Z+.
Note that (ν, ν∇p) ∈ Cτ for any choice of τ , hence,∫ jτ

0

∫
Rd

|mτ |2

2ντ
≤

∫ jτ

0

∫
Rd

ν

2
|∇p|2.

Given any ψ ∈ H1
c (Q∞) and j ∈ Z+, we have∫ jτ

0

∫
Rd

(ν̃τ−ντ )ψ =

∫
Rd

j−1∑
k=0

∫ (k+1)τ

kτ

∫ s

kτ

(
ντ (θ, x)∇φτ (θ, x)−ν(θ, x)∇p(θ, x)

)
·∇ψ(θ, x) dθ ds dx,

thus it follows that ντ converges to ν in Ḣ−1
loc (Q∞) as τ → 0. Hence, for any ψ ∈ H1

c (Q∞) it
follows from (4.10) and (4.12) that

lim
τ→0

∫
Q∞

(mτ − ν∇p) · ∇ψ = 0

so mτ converges weakly to ν∇p + w where w is some divergence free vector field. Given some
T > 0 let jτ = ⌈Tτ ⌉. We can then compute∫ jτ τ

0

∫
Rd

1

2
ντ |∇φτ −∇p|2 =

∫ jτ τ

0

∫
Rd

|mτ |2

2ντ
−mτ · ∇p+ 1

2
ντ |∇p|2.

≤
∫ jτ τ

0

∫
Rd

ν

2
|∇p|2 −mτ · ∇p+ 1

2
ντ |∇p|2.

ντ must converge weakly to ν in L2
loc([0,∞);L2(Rd)), therefore

lim
τ→0

∫ jτ τ

0

∫
Rd

1

2
ντ |∇φτ −∇p|2 = 0.

Now we can use Proposition 4.4 to deduce that for any s, t ≥ 0

(4.13) lim
τ→0

∫
Rd

min(ντ (s, x), ρ(s, x))|Sτ (t, s, x)−X(t, s, x)| dx = 0.

Finally, we can establish the pushforward formulas for ν. Let φ : Rd → R be a smooth
compactly supported test function. We can compute

|
∫
Rd

(
ντ (s+ t, x)−X(t, s, ·)#ν(s, ·)

)
φ(x) dx| =

|
∫
Rd

ντ (s, x)φ(Sτ (t, s, x))− ν(s, x)φ(X(t, s, x)) dx| =
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|
∫
Rd

ντ (s, x)
(
φ(Sτ (t, s, x))− φ(X(t, s, x))

)
dx|

Fix some ϵ > 0 and let Ωϵ(s) = {x ∈ Rd : ρ(s, x) < ϵ}. The previous line is then bounded from
above by

(4.14) ϵ−1∥∇φ∥L∞(Rd)

∫
Rd

ντ (s, x)ρ(s, x)|Sτ (t, s, x))−X(t, s, x)| dx

+ 2∥φ∥L∞(Rd)

∫
Ωϵ(s)

ντ (s, x) dx.

Sending τ → 0 we see that (4.14) is equal to

2∥φ∥L∞(Rd)

∫
Ωϵ(s)

ν(s, x) dx.

Thanks to our assumption (4.11), this last integral vanishes as ϵ → 0. Thus it follows that
X(t, s, ·)#ν(s, ·) = ν(s+ t, ·) almost everywhere in space and for every s, t ≥ 0. Since Y (t, s, x) is
the inverse of X(t, s− t, x) we also have Y (t, s, ·)#ν(s, ·) = ν(s− t, ·) almost everywhere in space
and for every s ≥ 0 and t ≤ s.

□

Now we can prove Theorem 1.3.

Proof of Theorem 1.3. We have already verified that our solution satisfies property (ii) of a com-
plete Lagrangian solution. From our convergence properties, it follows that (ρ1, . . . , ρℓ, p, n) is
a weak solution to the tumor growth system with initial data (ρ01, . . . , ρ

0
ℓ , n

0). Finally, since we

know that ρi ≤ p
1
γ we can deduce property (iii) from Lemma 4.3. Thus, (ρ1, . . . , ρℓ, p, n) is the

desired complete Lagrangian solution.
It remains to prove the nonmixing property. Let ρi,j = min(ρi, ρj). From the pushforward

representation formula (1.15), it follows that Y (t, t, ·)#ρi,j(t, ·) ≤ etB min(ρ0i , ρ
0
j ). If min(ρ0i , ρ

0
j ) =

0, then it follows that ρi,j = 0. Hence the nonmixing property holds. □

4.2. The incompressible limit. Now we want to construct solutions in the case γ = ∞. Given
growth terms G1, . . . , Gℓ satisfying (G1-G4) and initial data (ρ01, . . . , ρ

0
ℓ , n

0) satisfying (ID1-ID5),
we create a modified sequence of initial data as follows. Recall that the initial pressure p0 must
solve the equation

(4.15) ∆p0 +
ℓ∑

i=1

ρ0i
ρ0
Gi(p

0, n0) = 0, p0(1− ρ0) = 0.

Using p0, we create the sequence by setting ρ0γ = (p0)
1
γ and ρ0i,γ = ρ0γ

ρ0i
ρ0
. The key properties of

this sequence are summarized below.

Lemma 4.7. (ρ01,γ , . . . , ρℓ,γ , n
0) satisfies (ID1-ID3),

(4.16) sup
γ

∫
Rd

γρ0γ(∆p0 +
ℓ∑

i=1

ρ0i,γ
ρ0γ

Gi(p
0, n0))2− = 0,

and limγ→∞∥ρ0i − ρ0i,γ∥L1(Rd) = 0.

Proof. The first two claims are clear from our construction. For the last property, we note that
(ID5) implies the existence of some λ > 0 such that

∫
Rd ρ

0 log(1 + 1/p0)λ < ∞, thus, for any

ϵ > 0 the set {x ∈ Rd : p0 < ϵ} has ρ0 measure at most 1
| log(ϵ)|λ . Thus limγ→∞(p0(x))

1
γ = 1
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almost everywhere on the support of ρ0. Since p0 = 0 on the complement of the support of ρ0,
we can deduce limγ→∞∥ρ0i − ρ0i,γ∥L1(Rd) = 0 from dominated convergence. □

Now that we have a sequence of initial data satisfying (ID1-ID3), for each γ ≥ 1 we can use
Theorem 1.3 to construct complete Lagrangian solutions (ρ1,γ , . . . , ρℓ,γ , pγ , nγ) to (1.1-1.2) with
initial data (ρ01, . . . , ρ

0
ℓ , n

0). Our goal is now to show that these solutions converge to a complete
Lagrangian solution to the incompressible system as we send γ → ∞. Due to the fact that we
only have uniform L1 regularity for the time derivative of the pressure along the sequence, we
will need to proceed more carefully than we did in the case γ <∞.

Lemma 4.8. If γk is a sequence such that limk→∞ γk = ∞ then pγk is precompact in L2([0, T ];H1(Rd)),

nγk is precompact in L2([0, T ];H1(Rd)) ∩ C([0, T ];L2(Rd)), and ρi,γk is weakly precompact in
L1(QT ) for each i ∈ {1, . . . , ℓ}.

Proof. We argue as in Lemma 4.2, except that we can no longer establish that pγk is C([0, T ];L
2(Rd))

precompact. □

Now that we have established precompactness, in the rest of this subsection we will assume
(without loss of generality) that γk is a subsequence such that (ρ1,γk , . . . , ρℓ,γk , pγk , nγk) converges
to a point (ρ1, . . . , ρℓ, p, n) where the convergence holds in the spaces that we identified in Lemma
4.8.

We now establish some properties of the limit point.

Lemma 4.9. (ρ1, . . . , ρℓ, p, n) is a weak solution to the incompressible system (1.16-1.17). Fur-
thermore, ρ is nondecreasing in time almost everywhere, and for any T ≥ 0, the set {(t, x) ∈
QT : ρ(t, x) > 0, p(t, x) = 0} has measure zero, and p satisfies the complementarity formula

(4.17) p = argmin
φ(1−ρ)=0

∫
QT

1

2
|∇φ|2 − φG,

where G =
∑ℓ

i=1
ρi
ρ Gi(p, n).

Proof. The convergence properties that we have are strong enough to guarantee that (ρ1, . . . , ρℓ, p, n)
is a weak solution to the equations

∂tρi −∇ · (ρi∇p) = ρiGi(p, n)

∂tn− α∆n =
ℓ∑

i=1

βiρi.

To prove that (ρ1, . . . , ρℓ, p, n) is a solution to the incompressible system (1.16-1.17) we still need
to show that ρ ≤ 1 and p(1 − ρ) = 0 almost everywhere. Since pγk ≤ ph almost everywhere, it

follows that ργk ≤ p
1
γk
h almost everywhere. Therefore, ρ ≤ 1 almost everywhere. Fix some ϵ > 0

and some set E ⊂ QT with finite measure. We can then compute∫
E
p(t, x)(1− ρ(t, x)) dx dt = lim

k→∞

∫
E
pγk(t, x)(1− ργk(t, x))

≤ lim
k→∞

∫
E
ϵpγk + (1− ϵ)γk ≤ ϵ∥p∥L1(E),

where the first inequality follows from splitting E into the sets {(t, x) ∈ E : ργk < 1 − ϵ} and
{(t, x) ∈ E : ργk ≥ 1− ϵ}. Sending ϵ→ 0 we can conclude that p(1− ρ) = 0 almost everywhere.

Now that we know that (ρ1, . . . , ρℓ, p, n) satisfies (1.16-1.17) we can glean some more informa-
tion. Summing (1.16) over the populations, we see that ρ, p are weak solutions of the equation

(4.18) ∂tρ−∇ · (ρ∇p) = ρG p(1− ρ) = 0, ρ ≤ 1,
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which is the Hele-Shaw equation with a source term. Condition (G4) guarantees that Gi ≥ 0
everywhere for each i, thus, standard theory for the Hele-Shaw equation implies that ρ must be
nondecreasing in time, the support of p must be nondecreasing in time, and ρ(t, x) ≤ eBtρ0(x) for
almost every (t, x) where p(t, x) = 0 (see for instance [PQV14, JKT21]). Since {x ∈ Rd : ρ0(x) >
0, p0(x) = 0} has measure zero, it follows that {x ∈ Rd : ρ(t, x) > 0, p(t, x) = 0} has measure
zero. Finally, the complementarity condition (4.17) is a consequence of the weak equation (4.18)
when the pressure has L2([0, T ];H1(Rd)) regularity (see for instance [PQV14, DP21, GKM22,
Jac21]).

□

In the next Lemma, we consider properties of the time integrated pressure w(s, x) :=
∫ t
0 p(s, x) dx

and wγk :=
∫ t
0 pγk(s, x) ds. The main advantage of working with this quantity is that w has better

time regularity than p while still having the same support.

Lemma 4.10. There exists constants C1, C2 > 0 such that for every t, τ ≥ 0 and any ϵ > 0

|{(x ∈ Rd : w(t, x) > ϵ+ C1tp(t, x)}|+ lim sup
k→∞

|{(x ∈ Rd : wγk(t, x) > ϵ+ C1tpγk(t, x)}| = 0,

and

|{(x ∈ Rd : w(t+τ, x) < C2τp(t, x)−ϵ}|+lim sup
k→∞

|{(x ∈ Rd : wγk(t+τ, x) < C2τpγk(t, x)−ϵ}| = 0.

Furthermore, for any T ≥ 0, the set {(t, x) ∈ QT : ρ(t, x) > 0, w(t, x) = 0} has measure zero.

Proof. To prove the first result, we note that (G1) and (G4) guarantee the existence of constants
0 < b1 ≤ b2 such that b1 ≤ G ≤ b2 almost everywhere. Define

p̃i = argmin
φ(1−ρ)=0

∫
QT

1

2
|∇φ|2 − φbi.

Since ρ is nondecreasing in time almost everywhere, it follows that both p̃1, p̃2 are nondecreasing
in time almost everywhere. The comparison principle also implies that p̃1 ≤ p ≤ p̃2. Thus, we
have the string of inequalities

w(t, x) ≤
∫ t

0
p̃2(s, x) ds ≤ tp̃2(t, x) ≤ t

b2
b1
p̃1(t, x) ≤ t

b2
b1
p(t, x),

and

w(t+ τ, x) ≥
∫ t+τ

0
p̃1(s, x) ds ≥ τ p̃1(t, x) ≥ τ

b1
b2
p̃2(t, x) ≥ τ

b1
b2
p(t, x),

for almost every (t, x). Now using the strong convergence of pγk to p in L2([0, T ];H1(Rd)) we
can conclude that

|{(x ∈ Rd : w(t, x) > ϵ+ Ctp(t, x)}|+ lim sup
k→∞

|{(x ∈ Rd : wγk(t, x) > ϵ+ Ctpγk(t, x)}| = 0,

and

|{(x ∈ Rd : w(t+τ, x) < C2τp(t, x)−ϵ}|+lim sup
k→∞

|{(x ∈ Rd : wγk(t+τ, x) < C2τpγk(t, x)−ϵ}| = 0,

for almost every t, τ ≥ 0. To upgrade this to every t, τ ≥ 0 we simply note that ∂twγk and
(∂tpγk)− are uniformly bounded in L2(QT ) for any T ≥ 0

Now we turn our attention to proving the second result. For each δ > 0 and t ≥ 0, define
Eδ(t) := {x ∈ Rd : p(t, x) > δ,w(t, x) = 0} and note that

∫
Eδ(t)

ρ(t, x) dx = |Eδ(t)| for almost
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every t ≥ 0. From our work above, it follows that
∫ T
0 |Eδ(t) ∩ Eδ(t + τ)| dt = 0 for all τ > 0.

Hence, for any t, τ ≥ 0 and m ∈ Z+ we can deduce that

1

τ

∫ t+τ

t

∫
Rd

ρ(s, x) dx ds ≥ 1

τ

∫ t+τ

t

2m∑
j=1

∫
Eδ(

js
2m

)
ρ(s, x) dx ds ≥ 1

τ

∫ t+τ

t

2m∑
j=1

|Eδ(
js

2m
)| ds.

Diving both sides by 2m and then sending m→ ∞, we can conclude that

1

τ

∫ t+τ

t

∫ s

0
|Eδ(θ)| dθ ds = 0.

Hence, it follows that {(t, x) ∈ QT : p(t, x) > δ,w(t, x) = 0} has measure zero for all δ > 0.
Recalling that {(t, x) ∈ QT : ρ(t, x) > 0, p(t, x) = 0} has measure zero, we can conclude that
{(t, x) ∈ QT : ρ(t, x) > 0, w(t, x) = 0} also has measure zero.

□

At last we can prove the analogues of Lemma 4.3 and Propositions 4.4 and 4.5.

Lemma 4.11. Let Xk and Yk be the forward and backward Lagrangian flows along −∇pγk . For
any T ≥ 0,

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

w(s, x)|Xj(t, s, x)−Xk(t, s, x)| dx = 0.

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

w(s, x)|Yj(t, s, x)− Yk(t, s, x)| dx = 0.

Proof. Clearly wγk converges to w in C([0, T ];L∞(Rd) ∩ L1(Rd)), therefore

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

w(s, x)|Xj(t, s, x)−Xk(t, s, x)| dx =

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

min(wγk(s, x), wγj (s, x))|Xj(t, s, x)−Xk(t, s, x)| dx ≲

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

sp
1− 1

γ

h min(ργk , ργj )(s, x)|Xj(t, s, x)−Xk(t, s, x)| dx

where the second inequality follows from our work in Lemma 4.10 and the bound pγk ≤ ργkp
1− 1

γ

h .
Since the initial data satisfies (ID5) and G satisfies (G4), we can use Proposition 3.5 to get

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

min(ργk(s, x), ργj (s, x))|Xj(t, s, x)−Xk(t, s, x)| dx = 0.

An identical argument proves that

lim
j,k→∞

sup
s≤T

sup
t≤s

∫
Rd

w(s, x)|Yj(t, s, x)− Yk(t, s, x)| dx = 0.

□

Proposition 4.12. Let X and Y be the L1
loc([0,∞);L1(p2)) limits of Xk and Yk. Let V, µ, S, Z

be as in Section 3. For any λ′ ∈ [0, 1/2) ∩ [0, λ] we have the estimates
(4.19)

sup
s≤T

sup
t≤T

∫
Rd

min(µ(s, x), w(s, x))|X(t, s, x)−S(t, s, x)| ≤ min(T, 1)Cγ(2T ) log(1+log(1+δ−1
T ))−λ′/2,

(4.20)

sup
s≤T

sup
t≤s

∫
Rd

min(µ(s, x), w(s, x))|Y (t, s, x)−Z(t, s, x)| ≤ min(T, 1)Cγ(T ) log(1+log(1+δ−1
T ))−λ′/2,
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where δT = ∥∇p+ V ∥L2(QT ) and Cγ(T ) is a multiple of the constant in Proposition 3.5 and λ is
the constant in condition (ID5).

Proof. See the arguments of Proposition 4.4 and Lemma 4.11. □

Proposition 4.13. Let X and Y be the L1
loc([0,∞);L1(w2)) limits of Xk and Yk. Suppose that

ν ∈ L∞
loc([0,∞);L1(Rd) ∩ L∞(Rd)) is a weak solution to the continuity equation

(4.21) ∂tν −∇ · (ν∇p) = 0,

with initial data ν0. If ν is everywhere nonnegative and

(4.22)

∫
{x∈Rd:w(s,x)=0}

ν(s, x) = 0

for all s > 0, then X(t, s, ·)#ν(s, ·) = ν(s+ t, ·) for all s, t ≥ 0 almost everywhere in space.

Proof. See the arguments of Proposition 4.5 and Lemma 4.11. □

Finally we can prove Theorem 1.4.

Proof of Theorem 1.4. We have already established that (ρ1, . . . , ρℓ, p, n) is a solution to the
incompressible system (1.16-1.17). The strong convergence of the Xk, Yk to X,Y on the support
of w implies that X and Y satisfy all the properties in Definition 1.1 when restricted to the
support of w. Noting that t 7→

∫
Rd ρ(t, x) dx is a Lipschitz function and spt(ρ) = spt(w) almost

everywhere in spacetime, it follows that X,Y satisfy all of the properties in Definition 1.1 for
all s ≥ 0 and almost every x ∈ spt(ρ(s, x)). Thus, (ρ1, . . . , ρℓ, p, n) is a complete Lagrangian
solution to the incompressible system (1.16-1.17).

The proof of the nonmixing property is identical to the proof of the nonmixing property in
Theorem 1.3.

□
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