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1. Introduction
In the last ten years, neural networks have made incredi-
ble strides in classifying large data sets, to the point that
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they can now outperform humans in raw accuracy. How-
ever, the robustness of these systems is a completely differ-
ent story. Suppose you were asked to identify whether a
photo contained an image of a cat or a dog. You probably
would have no difficulty at all; at worst, maybe you would
only be tripped up by a particularly small or unusual Shiba
Inu. In contrast, it has beenwidely documented that an ad-
versary can convince an otherwise well-performing neural
network that a dog is actually a cat (or vice-versa) by mak-
ing tiny human-imperceptible changes to an image at the
pixel level. These small perturbations are known as adver-
sarial attacks and they are a significant obstacle to the de-
ployment of machine learning systems in security-critical
applications [GSS14]. The susceptibility to adversarial at-
tacks is not exclusive to neural network models, and many
other learning systems have also been observed to be brit-
tle when facing adversarial perturbations of data.
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The business of defending against adversarial attacks is
known as adversarial robustness, robust training, or simply
adversarial training (although we will mostly reserve the
latter name for a specific optimization objective). There
are many methods in the literature that can be used to
build defenses against adversarial attacks, but here we will
be particularly interested in methods that enforce robust-
ness during model training. In these types of methods, the
standard training process — driven primarily by accuracy
maximization — is substituted by a training process that
promotes robustness, typically through the use of a differ-
ent optimization objective that factors in the actions of a
well-defined adversary.

In this article, we give a brief overview of adversarial at-
tacks and adversarial robustness and summarize some re-
cent attempts to mathematically understand the process
of robust training. Adversarial training and its mathemati-
cal foundations are active areas of research and a thorough
review of its extant literature is beyond the scope of this ar-
ticle.1 For this reason, we will focus our discussion around
some important lines of research in the theory of adver-
sarial robustness, some of which are based on our own re-
search work in the field, which takes a distinctive analytic
and geometric perspective. One of our goals is to convey
the mathematical richness of the field and discuss some of
the many opportunities that are available for mathemati-
cians to contribute to the development and understanding
of this important applied problem.
1.1. Basics of training learning models. Data classifica-
tion or regression typically occurs over a product space of
the form𝒵 = 𝒳×𝒴. Here𝒳 is the data space or feature space,
an abstract metric space containing the data points, while
𝒴 is the set of labels, usually a finite set for classification
tasks or the real line for regression. In the remainder, we
mostly focus our discussion on the classification problem.
There, the goal is to construct a function that accurately
partitions the data space into the possible classes con-
tained in 𝒴. The learner does this by searching for a func-
tion 𝑓 ∶ 𝒳 → 𝒴 or 𝑓 ∶ 𝒳 → 𝑆𝒴 where 𝑆𝒴 is the probability
simplex with |𝒴| vertices 𝑆𝒴 = {𝑝 ∈ [0, 1]𝒴 ∶ ∑𝑦∈𝒴 𝑝𝑦 = 1}.
If we write 𝑓(𝑥) = (𝑓𝑦(𝑥))𝑦∈𝒴 , then each 𝑓𝑦 represents the
learner’s confidence that the data point 𝑥 ∈ 𝒳 belongs to
class 𝑦 ∈ 𝒴. While a probabilistic classifier is typically the
desired output of a learning task, note that one can always
obtain a deterministic classifier 𝑓 ∶ 𝒳 → 𝒴 by selecting
the largest entry of any tuple.

To train a machine learning system, one typically needs
a finite training set 𝑍 ⊂ 𝒵 consisting of data pairs (𝑥𝑖, 𝑦𝑖),
i.e., feature vectors with their associated ground truth clas-
sification. One then minimizes a loss function over some

1AMS Notices limits to 20 the references per article; we refer to the references
cited here for further pointers to the literature.

chosen function space ℱ ⊂ {𝑓 ∶ 𝒳 → 𝑆𝒴} with the goal
of finding a function 𝑓∗ that produces an accurate classifi-
cation of the data. For instance, ℱ may be the space of all
neural networks with a certain architecture, while the loss
function typically has the form

1
|𝑍| ∑

(𝑥,𝑦)∈𝑍
ℓ(𝑓(𝑥), 𝑦), (1)

where ℓ is a function that is small when 𝑓(𝑥) gives high
probability to the ground truth label 𝑦, and large other-
wise. In practice, it may only be possible to find a classi-
fier 𝑓 that is a local minimizer of (1) over ℱ, though it
is often possible to drive the loss function to nearly zero
during training via stochastic gradient descent. Either way,
well-trained classifiers typically perform well—at least in
the absence of adversarial attacks.
1.2. Adversarial attacks. Given a trained classifier 𝑓 and
a data point 𝑥 ∈ 𝒳, what is the best way for an adversary
to perturb 𝑥 to produce an incorrect classification? In or-
der for this to be a nontrivial question, we must assume
that there are some restrictions on how far the adversary
can perturb 𝑥. This restriction is known as the adversarial
budget, and it plays a crucial role in both adversarial attacks
and robust training. For our purposes, we will formulate
the adversarial budget through a parameter 𝜀 > 0 and as-
sume that the adversary can only produce a perturbed data
point that lies in 𝐵𝜀(𝑥) ⊂ 𝒳, the ball of radius 𝜀 centered at
the original data point 𝑥.

Returning to our question, if the adversary has full ac-
cess to the function 𝑓 and knows that the correct label for
𝑥 is 𝑦, then the most powerful attack for a given budget 𝜀
is found by replacing 𝑥 with any point ̃𝑥 satisfying

̃𝑥 ∈ argmax
𝑥′∈𝐵𝜀(𝑥)

ℓ(𝑓(𝑥′), 𝑦). (2)

In practice, the adversary may not be able to find a point ̃𝑥
that exactly satisfies (2). However, when𝒳 is a subspace of
Euclidean space, a simpler approach that produces highly
effective attacks is to perturb the data in the direction of
steepest ascent for the loss function by choosing

̃𝑥 = 𝑥 + 𝜀 ∇𝑥ℓ(𝑓(𝑥), 𝑦)
‖∇𝑥ℓ(𝑓(𝑥), 𝑦)‖

, (3)

or by considering the popular PGD attack

̃𝑥 = 𝑥 + 𝜀sign(∇𝑥ℓ(𝑓(𝑥), 𝑦)), (4)

where sign(⋅) denotes the coordinatewise sign of its input;
see [GSS14,MMS+18], and [TT22] for a motivation for the
PGD attack.

Regardless of how the adversary chooses its attack, there
are two key takeaways from formulas (2), (3), and (4) that
we would like to highlight. Firstly, we see that adversar-
ial attacks are found by attempting to maximize the loss
function with respect to data perturbations. In contrast,
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the learner trains the classifier by attempting to minimize
the loss function among classifiers belonging to a chosen
function space ℱ (typically a parametric family). Hence,
the learner and adversary can be viewed as playing a two-
player game where they compete to set the value of the
loss function using the tools at their disposal (the learner
first gets to choose 𝑓, the adversary then gets to modify
data); this connection to game theory will become more
important shortly. Secondly, it should be clear from for-
mulas (2), (3), and (4) that the effectiveness of adversarial
attacks must stem from a certain lack of smoothness in
the trained classifier 𝑓. Indeed, if 𝑓 were say 1-Lipschitz,
then an adversary with budget 𝜀 could not change the clas-
sification probabilities at any point by more than 𝜀. Thus,
attacks that can fool an image classifier by making human-
imperceptible changes to pixel values must be exploiting a
significant lack of regularity.
1.3. Adversarial training. In light of the above considera-
tions, to stave off adversarial attacks onemust find a way to
construct classifiers with better regularity properties. The
most classical (and perhaps most obvious) way to do this
would be to replace the training objective (1) with a new
objective

1
|𝑍| ∑

(𝑥,𝑦)∈𝑍
ℓ(𝑓(𝑥), 𝑦) + 𝑅(𝑓) (5)

where 𝑅 ∶ ℱ → ℝ is a term that promotes regularity. For
instance, 𝑅 could constrain the Lipschitz constant of 𝑓 or
could be some other gradient penalty term. This approach
has a long history of success in inverse problems (in that
setting one typically adds a regularizing term to a data-
fitting term to help mitigate the effect of noise), however,
in the context of machine learning, it is often too difficult
to efficiently minimize (5). For instance, it is very difficult
to train a neural network with a Lipschitz constant con-
straint. On the other hand, popular and computationally
feasible regularization terms for neural network training,
for instance, weight regularization, do not seem to provide
any defense against adversarial attacks.

Adversarial training is a different approach to regular-
ization/robustification that has become very popular in
the machine learning community. In adversarial training,
rather than modifying the training objective with a regu-
larizing term, one instead incorporates the adversary into
the training process [SZS+14, MMS+18]. More precisely,
adversarial training replaces the objective (1) with

1
|𝑍| ∑

(𝑥,𝑦)∈𝑍
sup

�̃�∈𝐵𝜀(𝑥)
ℓ(𝑓( ̃𝑥, 𝑦), (6)

where the adversarial budget 𝜀 is chosen by the user. When
training using (6), the learner is forced to find a function
𝑓 that cannot be easily attacked by an adversary with bud-
get 𝜀. The advantages of training using (6) compared to

(5) are conceptual and computational. Conceptual, be-
cause in the formulation (6) one explicitly trains to de-
fend against a well-defined adversary (although in prac-
tice this requires “understanding the enemy”). Computa-
tional, because (6) is in essence a min-max problem (the
adversarymaximizes over 𝜀-perturbationswhile the learner
minimizes by altering 𝑓) for which many implementable
algorithms exist (for instance alternating gradient descent
and ascent steps). Furthermore, the regularizing effect of
(6) is data-dependent in contrast to the regularization in-
duced by a standard gradient penalty term which has very
little connection to the structure of the data.

On the other hand, compared to (5), it is harder to un-
derstand (analytically and geometrically) how exactly (6)
is regularizing/robustifying the classifier 𝑓; see the discus-
sion in [TT22] and references therein. Furthermore, it is
not so clear how the user should choose the budget param-
eter 𝜀 and be mindful of the tradeoff between accuracy (on
clean data) and robustness that problem (6) introduces.
Answering these questions in full generality is challenging
and remains an open problem in the field.
1.4. Outline. To fix some ideas, we write (6) in the gen-
eral form:

min
𝑓∈ℱ

𝔼(𝑥,𝑦)∼𝜇[ sup
�̃�∈𝐵𝜀(𝑥)

ℓ(𝑓( ̃𝑥), 𝑦)], (AT)

where 𝜇 is an arbitrary probability measure over 𝒵, the
“clean data distribution,” and not just an empirical mea-
sure as in (6). We work with arbitrary 𝜇 to avoid distin-
guishing, whenever unnecessary, between population and
finite data settings. Only in some parts of Section 2 will it
be important to make assumptions on 𝜇.

In this paper we explore the following general ques-
tions:

1. What type of regularization is enforced on learning
models by the presence of adversaries?

2. What are the tradeoffs between accuracy and robust-
ness when training models robustly?

3. How can one actually trainmodels to be robust to spe-
cific adversarial attacks?

4. How can one compute meaningful lower bounds for
the (AT) problem?

The above questions are too broad to be answered in com-
plete generality, and in the remainder, we will focus on
specific settings where we can reveal interesting geometric
and analytic structures. In particular, in Section 2, we ex-
plore the type of regularization enforced on binary clas-
sifiers, revealing a connection between adversarial train-
ing and perimeter minimization problems. This connec-
tion will allow us to interpret geometrically the tradeoff be-
tween accuracy and robustness. In Section 3, we discuss a
concrete game-theoretic interpretation of adversarial train-
ing and discuss a more general framework for adversarial
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robustness based on distributionally robust optimization
(DRO). We use this connection with game theory to dis-
cuss some potential strategies for training robust learning
models and highlight the significance of the concept of
Nash equilibrium for adversarial training. Finally, in Sec-
tion 4, we discuss how an agnostic learner setting can be
used to derive lower bounds for more general (AT) prob-
lems. We show that in the agnostic learner setting for
multiclass classification the adversarial robustness objec-
tive can be equivalently rewritten as the geometric prob-
lem of finding a (generalized) barycenter of a collection
of measures and then discuss the computational implica-
tions of this equivalence. We wrap up the paper in Section
5 by discussing some research directions connected to the
topics presented throughout the paper.
1.4.1. Additional notation. When working on 𝒳 = ℝ𝑑 we
will often consider balls 𝐵𝜀(𝑥) associated to a given norm
‖⋅‖ on ℝ𝑑. We use ‖⋅‖∗ to denote the dual norm of ‖⋅‖,
which is defined according to

‖𝑣‖∗ = sup
ᵆ∈ℝ𝑑 ∶ ‖ᵆ‖≤1

⟨𝑢, 𝑣⟩.

We will denote by 𝒫(𝒵) the space of Borel probability
measures over the set 𝒵. Given two measures 𝜇, �̃� ∈ 𝒫(𝒵)
we denote by Γ(𝜇, �̃�) the space of couplings between 𝜇 and
�̃�, i.e., probability measures over 𝒵×𝒵 whose first and sec-
ond marginals are, respectively, 𝜇 and �̃�. We will also use
the notion of a pushforward of a measure by a map. Pre-
cisely, if 𝑇 ∶ 𝐴 ↦ 𝐵 is a measurable map between two
measurable spaces, and 𝜇 is a probability measure over 𝐴,
we define 𝑇 ♯𝜇, the pushforward of 𝜇 by 𝑇, to be the mea-
sure on 𝐵 for which 𝑇 ♯𝜇(𝐶) = 𝜇(𝑇−1(𝐶)) for all measur-
able subsets 𝐶 of 𝐵.

2. Adversarial Robustness: Regularization
and Perimeter

In this section, we discuss the connection between adver-
sarial training and explicit regularization methods. To mo-
tivate this connection, let us first consider a simple robust
linear regression setting. In this setting, models in the fam-
ily ℱ = {𝑓𝜃 ∶ 𝜃 ∈ Θ} take the form

𝑓𝜃(𝑥) = ⟨𝜃, 𝑥⟩, 𝑥 ∈ 𝒳,

where Θ is some subset of ℝ𝑑 and 𝒳 = ℝ𝑑. Here, the
learner’s goal is to select a linear regression function re-
lating inputs 𝑥 ∈ ℝ𝑑 to real-valued outputs 𝑦. We show
the following equivalence between problem (AT) and an
explicit regularization problem taking the form of a Lasso-
type linear regression:

min
𝜃∈Θ

𝔼(𝑥,𝑦)∼𝜇[ sup
�̃�∈𝐵𝜀(𝑥)

|⟨𝜃, ̃𝑥⟩ − 𝑦|]

= min
𝜃∈Θ

𝔼(𝑥,𝑦)∼𝜇[|⟨𝜃, 𝑥⟩ − 𝑦|] + 𝜀‖𝜃‖∗;
(7)

x x̃′′

θ

x̃′

Figure 1. ℓ1 ball around 𝑥 of radius 𝜀 crossed by level sets of
function 𝑥 ↦ ⟨𝜃, 𝑥⟩. The value sup�̃�∈𝐵𝜀(𝑥) |⟨𝜃, ̃𝑥⟩ − 𝑦| is realized at
either ̃𝑥′ or ̃𝑥″.

note that in order to be consistent with the standard defi-
nition of the Lasso regularization, we would require ‖⋅‖ to
be the 𝑙∞-norm to get ‖⋅‖∗ to be the 𝑙1-norm. Identity (7)
is only one of many similar identities relating regulariza-
tion methods and adversarially robust learning problems
for classical families of statistical models. The extent of
this type of equivalences is more apparent when consid-
ering DRO versions (see Section 3 for a definition) of the
adversarial training problem, e.g., see [BKM19], where in
addition some statistical inference methodologies, moti-
vated by these equivalences, are proposed.

To deduce (7), it is enough to consider the optimization
problem sup�̃�∈𝐵𝜀(𝑥) |𝑓𝜃(𝑥)−𝑦| at every fixed (𝑥, 𝑦) and real-
ize that the sup can be written as either sup�̃�∈𝐵𝜀(𝑥)⟨ ̃𝑥, 𝜃⟩−𝑦
when ⟨𝑥, 𝜃⟩ ≥ 𝑦, or as sup�̃�∈𝐵𝜀(𝑥) 𝑦 − ⟨ ̃𝑥, 𝜃⟩ when ⟨𝑥, 𝜃⟩ ≤ 𝑦;
see Figure 1 for an illustration. Using the definition of the
dual norm ‖⋅‖∗ one can deduce that in all cases this expres-
sion is equal to |⟨𝜃, 𝑥⟩−𝑦|+𝜀‖𝜃‖∗, from which (7) follows.

Equivalence (7), although limited to the linear regres-
sion setting, motivates exploring the regularization effect
of adversaries on more general families of learning mod-
els. In the remainder of this section we discuss how in
the binary classification setting this regularization effect can
be related to geometric properties of decision boundaries,
in particular to their size or curvature. By presenting this
analysis we hope to convey that the connection between
adversarial robustness and regularizationmethods goes be-
yond simple classical statistical settings, in turn revealing
a variety of interesting geometric problems motivated by
machine learning.
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2.1. Perimeter regularization. Let us consider a binary
classification version of (AT) where 𝑦 ∈ {0, 1}, ℓ is the 0-1
loss (i.e., 0 if the two inputs of ℓ are the same, and 1 other-
wise), andℱ is a family of binary classifiersℱ = {1𝐴 ∶ 𝐴 ∈
𝒜} for 𝒜 a family of measurable subsets of 𝒳. Here 1𝐴
denotes the indicator function of a subset 𝐴 of 𝒳, defined
according to

1𝐴(𝑥) = { 1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴.

Notice that we can “parameterize” a family of binary clas-
sifiers with a family of subsets in𝒳 without losing any gen-
erality, due to the fact that binary classifiers output one of
two values, 0 or 1, and thus can be characterized by the
regions of points in 𝒳 that they classify as a 1.

In general, as shown in [BGTM23], Problem (AT) is
equivalent to a regularization problem, with a non-local
perimeter regularizer, of the form:

inf
𝐴∈𝒜

𝔼(𝑥,𝑦)∼𝜇 [|1𝐴(𝑥) − 𝑦|] + 𝜀Per𝜀(𝐴; 𝜇), (8)

where

Per𝜀(𝐴) ≔
1
𝜀 𝜇0(𝜕𝜀𝐴

𝑐) + 1
𝜀 𝜇1(𝜕𝜀𝐴),

𝜕𝜀𝐴𝑐 ≔ {𝑥 ∈ 𝐴𝑐 ∶ dist(𝑥, 𝐴) < 𝜀},
𝜕𝜀𝐴 ≔ {𝑥 ∈ 𝐴∶ dist(𝑥, 𝐴𝑐) < 𝜀};

(9)

Figure 2 illustrates the sets 𝜕𝜀𝐴𝑐 and 𝜕𝜀𝐴. In the above,
the measures 𝜇0 and 𝜇1 are the measures over 𝒳 defined
according to 𝜇0(⋅) ≔ 𝜇(⋅ × {0}) and 𝜇1(⋅) ≔ 𝜇(⋅ × {1}),
i.e., up to scaling factors they are the conditional distri-
butions of the variable 𝑥 given the possible values that
𝑦 may take. The equivalence between (AT) and (8) can
be deduced, at least at a formal level, by adding and
subtracting the term 𝔼(𝑥,𝑦)∼𝜇[|1𝐴(𝑥) − 𝑦|] from the term
𝔼(𝑥,𝑦)∼𝜇[sup�̃�∈𝐵𝜀(𝑥) ℓ(1𝐴(𝑥), 𝑦)] and then identifying the re-
sulting terms with those in (9). To make these computa-
tions rigorous and to show existence of solutions to prob-
lem (9), there are several technical challenges, beginning
with the measurability of the operations involved in defin-
ing the problem (AT), that must be overcome; the first part
of the work [BGTM23] discusses some of these challenges.

Now, let us motivate the use of the word perimeter when
describing the functional Per𝜀(𝐴). Suppose that 𝒳 = ℝ𝑑

and that the measures 𝜇0 and 𝜇1 are absolutely continu-
ous with respect to the Lebesgue measure so that we can
write them as d𝜇0 = 𝜌0 d𝑥 and d𝜇1 = 𝜌1 d𝑥 for two non-
negative Lebesgue-integrable functions 𝜌0 and 𝜌1 that for
simplicity will be assumed to be smooth. In this case, (8)
can be rewritten as

Per𝜀(𝐴) =
1
𝜀 ∫𝜕𝜀𝐴𝑐

𝜌0(𝑥) d𝑥 +
1
𝜀 ∫𝜕𝜀𝐴

𝜌1(𝑥) d𝑥.

Notice that the sets 𝜕𝜀𝐴, 𝜕𝜀𝐴𝑐 in the volume integrals shrink
toward 𝜕𝐴, the boundary of𝐴, as we send 𝜀 → 0. Moreover,

due to the rescaling factor 𝜀 in front of these integrals, one
may anticipate a connection between Per𝜀(𝐴) and themore
classical notion of (weighted) perimeter:

Per(𝐴) ≔ ∫
𝜕𝐴
(𝜌0(𝑥) + 𝜌1(𝑥)) d𝑥 = ∫

𝜕𝐴
𝜌(𝑥) dℋ𝑑−1(𝑥),

where 𝜌(𝑥) ≔ 𝜌0(𝑥) + 𝜌1(𝑥). Note that 𝜕𝐴 is precisely the
decision boundary between classes 1 and 0 according to
the classifier 1𝐴 and that 𝜌(𝑥) is the density, with respect
to the Lebesgue measure, of the marginal of the data distri-
bution 𝜇 on the 𝑥 variable. In the definition of Per(𝐴) we
have usedℋ𝑑−1, the 𝑑−1 dimensional Hausdorff measure,
which can be used to measure the size of a hypersurface of
codimension one. In what follows we discuss two differ-
ent ways to understand the relationship between Per𝜀 and
Per.

One first possible way to relate Per𝜀 and Per is through
a pointwise convergence analysis: fix a set 𝐴 with regular
enough boundary and then study the behavior of Per𝜀(𝐴)
as 𝜀 → 0. This is the type of analysis discussed in [GTM22],
which was used by the authors to motivate the connection
between adversarial robustness in binary classification and
geometric variational problems involving perimeter. How-
ever, pointwise convergence of Per𝜀 toward Per is not suffi-
cient to ensure that Per𝜀 induces a perimeter regularization
type effect on its minimizers. For that, we need a different
type of convergence.

A different way to compare the functionals Per𝜀(⋅) and
Per is through a variational analysis; we refer the interested
reader to the recent paper [BS22], which explains in de-
tail this type of convergence and shows that Per𝜀 converges
variationally toward Per, at least when balls are induced
by the Euclidean distance. Here we restrict ourselves to
discussing some of the mathematical implications of the
analysis in [BS22], which considers problem (9) when𝒜 is
the set 𝔅(ℝ𝑑) of all (Borel) measurable subsets of 𝒳 = ℝ𝑑;
this setting corresponds to an agnostic learner setting.

First, [BS22] shows that minimizers 𝐴𝜀 of (8) converge,
as 𝜀 → 0, toward minimizers of the problem

min
𝐴∈𝒜Opt

Per(𝐴), (10)

where 𝒜Opt ≔ argmin𝐴′∈𝔅(ℝ𝑑) 𝔼(𝑥,𝑦)∼𝜇[|1𝐴′(𝑥) − 𝑦|]. This
means that, as 𝜀 → 0, solutions to the adversarial train-
ing problem select among minimizers to the unrobust risk
the ones with minimal perimeter. In particular, this result
helps capture the idea that when 𝜀 is small, the presence of
an adversary has the same effect as imposing a perimeter
penalization term on the classifiers; c.f. [GTM22] for more
discussion on this idea and on the relation with mean cur-
vature flows.

A second consequence of the results in [BS22] is an ex-
pansion in 𝜀 for the adversarial risk 𝑅∗𝜀 , i.e., the minimum
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Figure 2. In green, the set of points in 𝐴 within distance 𝜀 from
the boundary of 𝐴; in blue, the set of points in 𝐴𝑐 within
distance 𝜀 from the boundary. The union of 𝜕𝜀𝐴𝑐 and 𝜕𝜀𝐴 is the
region where the adversary may attack and guarantee a
mismatch between predicted and true labels.

value of (AT). Precisely,

𝑅∗𝜀 = 𝑅∗0 + 𝜀Per∗ + 𝑜(𝜀), (11)

where Per∗ denotes theminimum value in (10). The above
result is reminiscent to Danskin’s theorem for functions
over Euclidean space, a theorem that is used to characterize
the first “derivative” of a function defined as the infimum
over a family of functions. Naturally, the difficulty in prov-
ing a result like (11) lies in the fact that the functionals of
interest take subsets of𝒳 as input, and thus Danskin’s the-
orem cannot be applied. Formula (11) can be used to give
a geometric interpretation to the rate at which accuracy is
lost when building robust classifiers as a function of the
adversarial budget 𝜀. Indeed, this result says that for small
𝜖, accuracy is lost at the rate given by the Bayes classifier
with minimal perimeter. The trade-off between accuracy
and robustness has been investigated from statistical per-
spectives in [ZYJ+1909], for example. In contrast, the tools
and concepts discussed here have a geometric and analytic
flavor, with the caveat that they are only meaningful for
a population-level analysis of adversarial robustness in bi-
nary classification. To gain an even better understanding
of the situation, higher-order expansions of the adversar-
ial risk in 𝜀 would be desirable and are a current topic of
investigation.
2.2. Certifiability and regularity. In this section, we dis-
cuss notions of certifiability and regularity of robust binary
classifiers. We begin with a definition.

Definition 2.1. Let 1𝐴 be a binary classifier. We say that
𝑥 ∈ 𝒳 is 𝜀-certifiable (for 1𝐴) if 𝐵𝜀(𝑥) ⊆ 𝐴 or if 𝐵𝜀(𝑥) ⊆ 𝐴𝑐.

In simple terms, the certifiable points of a given classi-
fier are the points in 𝒳 for which the classification rule
stays constant within the ball of radius 𝜀 around them:
they are the points that are insensitive to the adversarial
attacks in the adversarial problem (AT).

While it is not possible to build nontrivial sets 𝐴 for
which all points in 𝒳 are certifiable, we can still ask
whether it is possible to find robust classifiers that are fully
characterized by their certifiable points. This motivates the
following definitions.

Definition 2.2. We say that a measurable set 𝐴 is 𝜀 inner
regular if for all 𝑥 ∈ 𝜕𝐴 there exists 𝑥′ ∈ 𝐴 such that

Figure 3. A data set for which no optimal robust classifier is 𝜀
pseudo-certifiable. If 𝑥 is in the blue region and 𝑥 ∈ 𝜕𝐵𝜀 for
some ball of radius 𝜀, then 𝐵𝜀 must intersect both a red and
purple circle.

𝐵𝜀(𝑥′) ⊂ 𝐴 and 𝑥 ∈ 𝜕𝐵𝜀(𝑥′). Likewise, we say that 𝐴 is
𝜀 outer regular, if 𝐴𝑐 is 𝜀 inner regular. Sets that are both
inner and outer 𝜀 regular will be referred to as 𝜀 pseudo-
certifiable.

Notice that a classifier that is 𝜀 pseudo-certifiable is com-
pletely determined by its outputs on its certifiable points.
Pseudo-certifiability is thus a desirable property. It is then
natural to wonder whether it is always possible to con-
struct an 𝜀 pseudo-certifiable classifier 1𝐴 minimizing the
adversarial risk, i.e., a set 𝐴 solving (AT) when the class
of sets 𝒜 is 𝔅(ℝ𝑑). As it turns out, the notion of pseudo-
certifiability is very strong, and in the case of the Euclidean
distance, for example, it implies that decision boundaries
are locally the graph of a 𝐶1,1 function; see [BGTM23] and
references therein. An example of a setting where no opti-
mal robust classifier is 𝜀 pseudo-certifiable is given in Fig-
ure 3. There, 𝜇 is the sum of four delta measures in ℝ2

at the points (±𝜀, ±𝜀), two red and two purple. Any op-
timal classifier must stay constant within the 𝜀-balls cen-
tered at each point. The color choice in the shaded blue re-
gion does not affect optimality, however, there is no way to
color this region and maintain 𝜖-inner regularity for both
sets (c.f. Figure 3).

While we cannot guarantee pseudo-certifiability for ro-
bust classifiers in general, we can still guarantee existence
of 𝜀-inner regular solutions, 𝜀-outer regular solutions, and
sometimes solutions with other forms of regularity. This
is the content of a series of results in [BGTM23] stated in-
formally below.

Theorem 2.3 (Informal from [BGTM23]). Let 𝜇 be an arbi-
trary probability measure over 𝒳× {0, 1}, and let ℱ be the class
of all Borel measurable classifiers. Let 𝐴 be any solution to the
(AT) problem. Then there exist two solutions 𝐴𝐼 , 𝐴𝑂 to (AT)
such that 𝐴𝐼 ⊆ 𝐴 ⊆ 𝐴𝑂, and
1. 𝐴𝐼 is 𝜀 inner-regular and 𝐴𝑂 is 𝜀 outer-regular.
2. Any measurable set 𝐴′ satisfying 𝐴𝐼 ⊆ 𝐴′ ⊆ 𝐴𝑂 is a solu-

tion to (AT).
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Figure 4. A set 𝐴𝐼 that is 𝜀-inner regular (some inwards cusps
allowed), a set 𝐴𝑂 that is 𝜀-outer regular (some outward cusps
allowed), and a smooth set 𝐴𝑆 in between. In the context of
Theorem 2.3 for Euclidean balls, the set 𝐴𝑆 would be a
solution to (AT).

Moreover, if 𝒳 is an Euclidean space and the balls 𝐵𝜀 are in-
duced by the Euclidean distance, then there exists a solution 𝐴
to (AT) such that the boundary of 𝐴 is locally the graph of a
𝐶1,1/3 function.

The analysis in [BGTM23] also provides quantitative es-
timates for the regularity of the decision boundary of the
classifier 1𝐴 in the last part of Theorem 2.3. In general,
these estimates blow up when 𝜀 → 0. It is however ex-
pected that one could get finer regularity estimates under
additional assumptions on 𝜇, e.g., assuming that 𝜇0 =
𝜌0 d𝑥, 𝜇1 = 𝜌1 d𝑥, and the set {𝑥 ∈ ℝ𝑑 ∶ 𝜌1(𝑥) = 𝜌0(𝑥)}
is sufficiently regular. Obtaining these finer estimates and
characterizing the needed regularity for these finer esti-
mates to apply are topics of current investigation.

3. Connections to Game Theory:
DRO Formulations of AT

In this section, we introduce a framework for adversarial
training that encompasses (AT) and that can be cast more
precisely within game theory. In particular, in this larger
framework we will be able to discuss the notion of Nash
equilibrium in adversarial training and consider its impli-
cations on the robust training of learning models.

The idea is as follows. Instead of considering pointwise
attacks as in (AT), where for every single data point (𝑥, 𝑦)
the adversary proposes an attack, we allow the adversary
to modify 𝜇 by producing an entirely new data distribu-
tion �̃�. Naturally, as in model (AT), the adversary must
pay a price (or use a budget) for carrying out this modifica-
tion. In precise terms, we consider the following families
of problems:

min
𝑓∈ℱ

max
�̃�∈𝒫(𝒵) s.t. 𝐷(𝜇,�̃�)≤𝜀

𝔼(�̃�, ̃𝑦)[ℓ(𝑓( ̃𝑥), ̃𝑦)] (12)

and
min
𝑓∈ℱ

max
�̃�∈𝒫(𝒵)

𝔼(�̃�, ̃𝑦)[ℓ(𝑓( ̃𝑥), ̃𝑦)] − 𝐶(𝜇, �̃�). (13)

The above are two instances of distributionally robust op-
timization problems given their inner maximization over
probability measures. Notice that, in general, problem
(12) can be written as (13) by defining the cost 𝐶(𝜇, �̃�) to
be 0 if the explicit constraint 𝐷(𝜇, �̃�) ≤ 𝜀 is satisfied and in-
finity otherwise. Both 𝐶 and 𝐷 can be interpreted as “dis-
tances” between probability distributions.

In the remainder of the paper, we will restrict our at-
tention to problem (13) with a cost function 𝐶 taking the
form of an optimal transport problem:

𝐶(𝜇, �̃�) = inf
𝜋∈Γ(𝜇,�̃�)

∫𝑐𝒵(𝑧, ̃𝑧)𝑑𝜋(𝑧, ̃𝑧), (14)

for a cost function 𝑐𝒵 ∶ 𝒵 × 𝒵 ↦ [0,∞] that describes the
marginal cost that the adversary must pay in order tomove
a clean data point 𝑧 to a new location ̃𝑧 (recall that Γ(𝜇, �̃�)
is the space of probability measures on 𝒵 × 𝒵 with first
marginal 𝜇 and second marginal �̃�). Notice that, in this
generality, the adversary has the ability to modify both the
feature vector 𝑥 and the label 𝑦.

Some natural examples of cost functions 𝑐𝒵 are
𝑐𝒵(𝑧, ̃𝑧) ≔ 𝑐𝑎|𝑧 − ̃𝑧|2, a choice that is particularly meaning-
ful when𝒳 = ℝ𝑑 and 𝒴 = ℝ; here, 𝑐𝑎 is a positive constant
that can be interpreted as reciprocal to an adversarial bud-
get. Another example of cost function 𝑐𝒵 of interest is (15)
below, which can be used to rewrite problem (AT) in the
form (13). Problem (13) is thus a rather general mathe-
matical formulation for adversarial training.

Proposition 3.1 (Informal). Problem (AT) is equivalent to
problem (13) for a cost function 𝐶 of the form (14) with mar-
ginal cost

𝑐𝒵(𝑧, ̃𝑧) = {0, if 𝑑(𝑥, ̃𝑥) ≤ 𝜀 and 𝑦 = ̃𝑦
∞, otherwise .

(15)

Proof. For a given 𝑓, let �̃� be a solution of the inner maxi-
mization problem in (13). Notice that, without the loss of
generality, we can assume that 𝐶(𝜇, �̃�) < ∞, which means
that there exists a coupling 𝜋 ∈ Γ(𝜇, �̃�) whose support is
contained in the set {(𝑧, ̃𝑧)∶ 𝑦 = ̃𝑦, 𝑑(𝑥, ̃𝑥) ≤ 𝜀}. Due to
this, we can write

𝔼 ̃𝑧∼�̃�[ℓ(𝑓( ̃𝑥), ̃𝑦)] = 𝔼(𝑧, ̃𝑧)∼𝜋[ℓ(𝑓( ̃𝑥), 𝑦)]
≤ 𝔼(𝑧, ̃𝑧)∼𝜋[ sup

�̃�′∈𝐵𝜀(𝑥)
ℓ(𝑓( ̃𝑥′), 𝑦)]

≤ 𝔼𝑧∼𝜇[ sup
�̃�′∈𝐵𝜀(𝑥)

ℓ(𝑓( ̃𝑥′), 𝑦)].

This shows that (13) ≤ (AT).
On the other hand, for an arbitrary 𝑓 and (𝑥, 𝑦) in

the support of 𝜇, let 𝑇1(𝑥, 𝑦) ∈ argmax�̃�∈𝐵𝜀(𝑥) ℓ(𝑓( ̃𝑥), 𝑦)
(assuming, for simplicity, that the sup is indeed reached
and that this operation can be defined in a measurable
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way). We then define 𝑇(𝑥, 𝑦) = (𝑇1(𝑥, 𝑦), 𝑦) and consider
�̃� ≔ 𝑇 ♯𝜇. Notice that by construction we have 𝐶(𝜇, �̃�) = 0,
from where it follows that

𝔼𝑧∼𝜇[ sup
�̃�′∈𝐵𝜀(𝑥)

ℓ(𝑓( ̃𝑥′), 𝑦)] = 𝔼 ̃𝑧∼�̃�[ℓ(𝑓( ̃𝑥), ̃𝑦)]

≤ max
�̃�′∈𝒫(𝒵)

𝔼 ̃𝑧∼�̃�′[ℓ(𝑓( ̃𝑥), ̃𝑦)] − 𝐶(𝜇, �̃�′).

From this we can deduce (AT) ≤ (13).
□

Remark 3.2. Problem (AT) can also be written in the form
(12). To see this, it is sufficient to define 𝐷(𝜇, �̃�) as the
following ∞-Wasserstein distance in 𝒵:

𝑊∞(𝜇, �̃�) = inf
𝜋∈Γ(𝜇,�̃�)

ess sup
(𝑧, ̃𝑧)∼𝜋

𝛿(𝑧, ̃𝑧),

where 𝛿(𝑧, ̃𝑧) = 𝑑(𝑥, ̃𝑥) if 𝑦 = ̃𝑦, and 𝛿(𝑧, ̃𝑧) = ∞ if 𝑦 ≠ ̃𝑦.

3.1. Nash equilibria in DRO. One of the merits of writ-
ing adversarial training problems in the form (13) (or
(12)) is that it allows us to explicitly interpret the process
of robust training as a zero-sum game between two play-
ers, a learner and an adversary. In this interpretation, the
learner’s strategies consist of learning models 𝑓 ∈ ℱ (re-
gression functions/classifiers), while the adversary’s con-
sist of data perturbations �̃�. The payoff function for the
adversary is set to be

𝒰(�̃�, 𝑓) ∶= 𝔼 ̃𝑧∼�̃�[ℓ(𝑓(𝑥), 𝑦)] − 𝐶(𝜇, �̃�), (16)

and the adversary’s goal is to maximize it, while the
learner’s goal is to minimize it.

We now recall the notion of a Nash equilibrium of a
game, one of the central notions in game theory.

Definition 3.3. We say that (�̃�∗, 𝑓∗) ∈ 𝒫(𝒵) × ℱ is a Nash
equilibrium for the adversarial training game

min
𝑓∈ℱ

max
�̃�∈𝒫(𝑍)

𝒰(�̃�, 𝑓), (17)

if 𝒰(�̃�, 𝑓∗) ≤ 𝒰(�̃�∗, 𝑓) for all 𝑓 ∈ ℱ and all �̃� ∈ 𝒫(𝒵).

For adversarial training, the theoretical existence of a
Nash equilibrium (�̃�∗, 𝑓∗) means that if the learner were
to choose model 𝑓∗, then its worst outcome would occur
precisely if the adversary played �̃�∗. This means that the
learner would have no incentive to use a model different
from 𝑓∗ regardless of the adversary’s attack. In addition,
when Nash equilibria exist, the min and the max in (17)
can be swapped and the apparent advantage that the ad-
versary has over the learner in the formulation (17) (the
adversary plays after observing the classifier chosen by the
learner) is in fact only apparent. Existence of Nash equi-
libria for (17) thus means good news for the robust train-
ing of models provided one could actually compute one
of them. Before we move on, it is important to highlight
that for 𝑓∗ to be useful in applications, one would need to

make sure that the cost function 𝐶 indeed restricts the ad-
versary to consider only small perturbations of clean data
points, but the exact meaning of “small perturbation” may
be application dependent. In what follows, we put aside
the challenges of modelling the cost function 𝐶 and in-
stead discuss the existence of Nash equilibria for (17) as-
suming 𝐶 has been fixed (i.e., we have already determined
how to model the adversary).

A well-known meta-result in game theory states that
Nash equilibria for a game typically exist in the players’
spaces of mixed strategies. In mathematical terms, this
means that to prove existence of Nash equilibria of a given
game one typically needs a convexification of the original
space of strategies. For the adversarial training problem
(17), since the adversary takes strategies in the space of
probability measures 𝒫(𝒵), no convexification is needed
for the adversary because 𝒫(𝒵) is already a convex space.
On the other hand, the spaceℱ of classification/regression
models may not be convex in general. One way to con-
vexify ℱ when ℱ is a parametric family of models ℱ =
{𝑓𝜃 ∶ 𝜃 ∈ Θ}, the most standard setting in practice, is
to consider a randomization of the classifiers/regression
functions in the original ℱ; this is the approach taken in
[MSP+2118]. Precisely, for the setting described in Propo-
sition 3.1, and given a parametric family ℱ, the authors of
[MSP+2118] show that the problem

min
𝜈∈𝒫(Θ)

max
�̃�∈𝒫(𝒵)

∫
Θ
𝒰(𝑓𝜃, �̃�) d𝜈(𝜃) (18)

admits Nash equilibria. Here 𝜈 can be interpreted as a
mixed strategy for the original game and induces a regres-
sion function/classification rule as follows: given an input
𝑥, sample 𝜃 from 𝜈 and then evaluate 𝑓𝜃(𝑥).

Another approach to convexify the set ℱ, useful in the
regression setting or when considering probabilistic classi-
fiers, is to work with the space of aggregate models ̂ℱ ≔
{∫Θ 𝑓𝜃(⋅) d𝜈(𝜃)∶ 𝜈 ∈ 𝒫(Θ)}; notice that elements in this
family can be directly interpreted as deterministic regres-
sion functions/probabilistic classifiers. In this setting, one
considers the game

min
𝜈∈𝒫(Θ)

max
�̃�∈𝒫(𝒵)

𝒰(𝜈, �̃�), (19)

where we abuse notation slightly and write 𝒰(𝜈, �̃�) to de-
note 𝒰(∫Θ 𝑓𝜃(⋅) d𝜈(𝜃), �̃�). The above setting is the one mo-
tivating the work [GG23].

While the convexification of the spaces of strategies is
important, to guarantee the existence of Nash equlibria
one also needs to make assumptions on the payoff func-
tion 𝒰. Sion’s theorem [Sio58], for example, a very gen-
eral result that can be used to guarantee existence of Nash
equilibria for rather general games, requires lower and
upper semicontinuity of the payoff function 𝒰 with re-
spect to some topology, as well as some weaker form of
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convexity/concavity of the payoff (a compactness prop-
erty is required as well). It is actually not so difficult to
check these assumptions for problems (18) and (19) when
the spaces 𝒫(𝒵) and 𝒫(Θ) are endowed with the topol-
ogy of weak convergence of probability measures and the
loss function ℓ in (16) is convex in its first argument; see
[MSP+2118] and [GG23] formore details on these assump-
tions.

Works discussing the existence of Nash equilibria for
a different variety of games go at least as far back as the
work by von Neumann [vN59] (English translation from
the original paper from 1928) and include other classical
papers such as [Gli52,Sio58]. There are plenty of results in
the literature that hold under a variety of assumptions that
are worth discussing, and we will yet see another minmax
result in Section 4, but discussing the extent of this topic
is certainly beyond the scope of this paper.
3.2. Greedy algorithms for DRO. Existence results are
statements made by an optimist: “there exists at least one
Nash equilibrium, and thus there must be a way to find
one. . . ” the realist would immediately inquire how. In
this section, we review a classical, perhaps the most pop-
ular, greedy algorithm that has been introduced in the lit-
erature to attempt solving minmax problems in Euclidean
spaces. After that, we provide some pointers to recent liter-
ature where tools from optimal transport theory are used
to adapt those greedy methods to solve minmax games
in spaces of measures over continuum domains, examples
of which are the DRO adversarial training problems (13)
when𝒳 is a domain ofℝ𝑑, andΘ is, for example, the space
of parameters of a neural network.

If the minmax problem that we were interested in was
one of the form min𝑝∈𝐷max𝑞∈𝐸 Φ(𝑝, 𝑞), where 𝐷, 𝐸 are
subsets of two Euclidean spaces, a natural greedy strategy
to alternate gradient ascent steps in the 𝑞 coordinate and
gradient descent steps in the 𝑝 coordinate. This greedy al-
gorithm is to minmax games what the gradient descent
algorithm is for minimization problems. In continuous
time, this descent-ascent approach can be interpreted as a
system of ODEs of the form:

{ ̇𝑝𝑡 = −∇𝑝Φ(𝑝𝑡, 𝑞𝑡)
̇𝑞𝑡 = ∇𝑞Φ(𝑝𝑡, 𝑞𝑡),

(20)

or projected versions thereof to guarantee that the dy-
namics stay within the feasible sets 𝐷 and 𝐸. As can be
expected, convergence of this scheme, especially toward
Nash equilibria for the problem, depends on properties of
the payoff function Φ (like for example strong convexity-
concavity) or on whether one is interested in the behav-
ior of (𝑝𝑡, 𝑞𝑡) as 𝑡 → ∞ or in the behavior of average iter-
ates ( 1

𝑡
∫𝑡
0 𝑝𝑠 d𝑠,

1
𝑡
∫𝑡
0 𝑞𝑠 d𝑠) as 𝑡 → ∞. We refer the reader to

the recent works [LJJ2013, DP18], which discuss some of

the existing literature on the topic and discuss drawbacks
of and alternatives to gradient descent-ascent dynamics to
solve minmax games.

While in general these potential issues about conver-
gence may play against the use of ascent-descent schemes,
they remain to be the simplest methods to consider for
solving minmax games. Due to this, it is of interest to
adapt them to the setting of problems (18) and (19) —
the difficulty lies in the fact that now the dynamics must
be defined in spaces of probability measures. Fortunately,
the theory of optimal transport, which has experienced
tremendous growth in the past two decades and has made
its way into a variety of applications in a variety of fields
(including machine learning), provides some useful av-
enues for carrying out this adaptation. Some of these ideas
can be found in the works [GG23,WC22, Lu22]. For ex-
ample, the recent work [GG23] discusses the use of opti-
mal transport based dynamics to solve convex-concave ad-
versarial training problems like (19). [WC22, Lu22], on
the other hand, use optimal transport based dynamics to
solve minmax games on spaces of measures with bilinear
payoff structure and thus are more suited for problems
such as (18). All works [GG23,WC22,Lu22] present some
promising results on the convergence properties of their
schemes, but, as it is discussed there, their theories remain
far from complete. Designing schemes that can efficiently
find Nash equilibria is an important question for adversar-
ial training and for game theory at large.

4. Adversaries and Barycenters
In Section 2, we discussed how adversarial training can
be seen as a perimeter minimization problem from the
perspective of the learner in the case of binary classifica-
tion. In this section, we will instead consider the non-
parametric problem from the perspective of the adversary
and show that the optimal adversarial strategy is given
by solving a generalized barycenter problem among data
distributions—an interpretation that holds regardless of
the number of classes. This constitutes yet another piece
of evidence that there is a rich geometric structure to adver-
sarial learning. The discussion here will be a brief sketch
of the main result from [GTKJ23].

Our starting point is the non-parametric, agnostic-
classifier version of the DRO training problem introduced
in Section 3. Here we will suppose that 𝑦 ∈ 𝒴 = {1, … , 𝐾},
ℓ is the 0-1 loss, and we allow the learner to choose any
possible probabilistic classifier. The resulting adversarial
training problem takes the form

min
𝑓∶𝒳→𝑆𝒴

max
�̃�∈𝒫(𝒵)

𝔼(�̃�, ̃𝑦)∼�̃�[1 − 𝑓 ̃𝑦( ̃𝑥)] − 𝐶(𝜇, �̃�). (21)

While focusing on the non-parametric case and the 0,1 loss
simplifies the problem, it is still a challenge to give an in-
terpretation for (21) in its current form. To make progress,
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we will eliminate the learner from the problem and obtain
a puremaximization problem that determines the optimal
strategy for the adversary. To do so, we will need to inter-
change the order of the min and max operations.
4.1. Interchanging min and max. As we discussed in Sec-
tion 3, there are various well-known theorems, such as
Sion’s minimax theorem, that guarantee that the inter-
change of min and max does not affect the value of the
problem or the optimal strategies for the players. The
space of all probabilistic classifiers {𝑓 ∶ 𝒳 → 𝑆𝒴} is con-
vex and the 0-1 loss is linear with respect to both 𝑓 and �̃�.
As a result, Sion’s minimax theorem applies and the inter-
change is valid. From a mathematical perspective, switch-
ing the order allows us to simplify the objective as themini-
mization problemmin𝑓∶𝒳→𝑆𝒴 𝔼(�̃�, ̃𝑦)∼�̃�[1−𝑓 ̃𝑦( ̃𝑥)] has a sim-
ple explicit solution.

To see this more clearly, we decompose the measure �̃�
over the label space writing �̃� = (�̃�1, … , �̃�𝐾). The previous
line is then equivalent to

min
𝑓∶𝒳→𝑆𝒴

∑
𝑦∈{1,…,𝐾}

𝔼�̃�∼�̃�𝑦[1 − 𝑓𝑦( ̃𝑥)]. (22)

Obviously, the learner would like to choose 𝑓 such that
𝑓𝑦( ̃𝑥) = 1. However, this may not always be possible. For
instance, if ̃𝑥 belongs to the support of �̃�1 and �̃�2, then
the learner must make a choice in order to respect the con-
straint ∑𝐾

𝑦=1 𝑓𝑦( ̃𝑥) = 1. If �̃�1 gives more mass to ̃𝑥 than �̃�2,
then it is best to choose 𝑓1( ̃𝑥) = 1 (and vice versa in the
other case); however, either way, the learner will have no
choice but to classify some of the data incorrectly. In gen-
eral, if a point ̃𝑥 belongs to the support of multiple mea-
sures, then the learner achieves the smallest value at ̃𝑥 by
choosing 𝑓( ̃𝑥) to concentrate on the label 𝑦∗ such that �̃�𝑦∗
gives more mass to ̃𝑥 than any of the other measures (i.e.,
the mass from 𝑦∗ is classified correctly and the rest of the
data at ̃𝑥 is misclassified). This reveals an extremely impor-
tant facet of the adversary’s strategy: if the adversary can
manipulate the data so that points from different classes
are on top of one another, then the learner is forced to
misclassify some of the data; furthermore, this effect gets
stronger as the number of overlapping classes increases.

From the above considerations, it turns out that (22) is
equal to

max
𝜆∈ℳ+(𝒳)

−𝜆(𝒳) + ∑
𝑦∈{1,…𝐾}

�̃�𝑦(𝒳) s.t. �̃�𝑦 ≤ 𝜆,

i.e., 𝜆 will be the smallest possible measure that lies above
each of the �̃�𝑦 (note that ℳ+(𝒳) represents the space
of all nonnegative Borel measures on 𝒳). Note that
since the adversary cannot change the number of data
points (equivalently the total mass of the data) we must
have ∑𝑦∈{1,…,𝐾} �̃�𝑦(𝒳) = ∑𝑦∈{1,…,𝐾} 𝜇𝑦(𝒳), which is a pos-
itive constant that we will denote as 𝑀. Hence, after

interchanging the min and the max, we can eliminate the
learner and replace (25) with a problem that only consid-
ers the action of the adversary

max
𝜆∈ℳ+(𝒳),�̃�∈𝒫(𝒵)

𝑀 − 𝜆(𝒳) − 𝐶(𝜇, �̃�) s.t. �̃�𝑦 ≤ 𝜆. (23)

Let us note that the quantity𝑀−𝜆(𝒳) is precisely the adver-
sarial risk. Hence, the adversary would like to maximize
the risk, while respecting the constraints and not paying
too much in the transportation cost 𝐶(𝜇, �̃�). In what fol-
lows, we will show that this problem can be viewed as a
generalization of a barycenter problem with respect to the
Wasserstein distance.
4.2. Generalized barycenters. Given 𝐾 probability mea-
sures 𝜚1, … , 𝜚𝐾 ∈ 𝒫(𝒳) and a cost 𝑐 ∶ 𝒳 × 𝒳 → [0,∞], the
Wasserstein barycenter problem tries to find ameasure 𝜚∗ such
that the summed cost of transporting each of the 𝜚𝑖 onto 𝜚∗
(with respect to the optimal transport cost induced by 𝑐) is
as small as possible. We now claim that problem (23) is a
generalization of this barycenter problem when the adver-
sary is not allowed to change class labels. In that case, the
cost 𝐶(𝜇, �̃�) decomposes into a sum over each of the possi-
ble class labels 𝐶(𝜇, �̃�) = ∑𝑦∈{1,…,𝐾} 𝐶𝒳(𝜇𝑦, �̃�𝑦) (where 𝐶𝒳
is the optimal transport cost for measures defined over 𝒳
rather than 𝒵). For 𝜆 fixed, let us write

̄𝐶(𝜇𝑦, 𝜆) ≔ min
�̃�𝑦

𝐶(𝜇𝑦, �̃�𝑦) s.t. �̃�𝑦 ≤ 𝜆,

and note that ̄𝐶(𝜇𝑦, 𝜆) represents the cheapest possible way
to transport 𝜇𝑦 onto some part of 𝜆. Using this notation,
problem (23) becomes

max
𝜆∈ℳ+(𝒳)

𝑀 − 𝜆(𝒳) − ∑
𝑦∈{1,…,𝐾}

̄𝐶(𝜇𝑦, 𝜆), (24)

which we will refer to as the generalized Wasserstein
barycenter problem (GBP) and an optimal solution 𝜆∗ as
a generalized Wasserstein barycenter.

In GBP, we try to find a nonnegative measure 𝜆 (no
longer necessarily a probability measure) such that the to-
tal mass of 𝜆 plus the summed cost of transporting each
𝜇𝑦 onto some part of 𝜆 is as small as possible. To un-
derstand this in the context of adversarial training, let us
consider two extreme choices for 𝜆. In the first extreme
case, let us choose 𝜆1 = ∑𝑦∈{1,…,𝐾} 𝜇𝑦. With this choice,
̄𝐶(𝜇𝑦, 𝜆1) = 0 for all 𝑦, since 𝜇𝑦 is already part of 𝜆1 and

hence we do not need to transport any mass. On the other
hand, 𝑀 − 𝜆1(𝒳) = 𝑀 − ∑𝑦∈{1,…,𝐾} 𝜇𝑦(𝒳) = 0. In other
words, this choice produces 0 adversarial risk, meaning
that the learner will be able to classify everything correctly
(i.e., the adversary has not created any confusion between
the classes). Clearly, this is a bad choice for the adversary
even though the transportation cost is 0. In the second ex-
treme case, 𝜆2, we try tomake the adversarial risk𝑀−𝜆2(𝒳)
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as large as possible. Since each of the 𝜇𝑦 must be trans-
ported on to 𝜆2, we must have 𝜆2(𝒳) ≥ max𝑦 𝜇𝑦(𝒳). In
order to avoid paying a large transportation cost, we want
𝜆2 to satisfy

𝜆2 ∈ argmin
𝜆∈ℳ+(𝒳),𝜆(𝑋)=max𝑦 𝜇𝑦(𝒳)

∑
𝑦∈{1,…,𝐾}

̄𝐶(𝜇𝑦, 𝜆).

When all of the 𝜇𝑦 have the same total mass, 𝜆2 will be a
solution to the Wasserstein barycenter problem, since the
condition 𝜆(𝑋) = 𝜇1(𝒳) = ⋯ = 𝜇𝐾(𝒳) means that each
𝜇𝑦 must transport all of its mass onto 𝜆. In other words, to
maximize the adversarial risk, the best thing the adversary
can do is rearrange the data distributions for each class so
that they all fully overlap on the same measure (note that
this lines up with our insights from the previous subsec-
tion). In this case, the learner must necessarily misclassify
100 ∗ 𝑀−1

𝑀
% of the data as every location in 𝒳 containing

a data point will have an equally mixed fraction of each
class. Note however, that this may not be the best overall
adversarial strategy, as the costs ̄𝐶(𝜇𝑦, 𝜆2) may outweigh
the maximization of the adversarial risk. This is partic-
ularly the case when we consider the most relevant cost
(15), where the adversarial budget parameter 𝜀 may make
it literally impossible for the adversary to move each 𝜇𝑦
onto a single common distribution. In general, the opti-
mal choice of 𝜆 is something between the two extremes
offered by 𝜆1, 𝜆2 (c.f. Figure 5), in other words the adver-
sary must balance the desire to maximize the risk against
the imposition of the adversarial budget.

Now one may ask, what can we gain from under-
standing the optimal adversarial strategy through the lens
of GBP? Furthermore, one might also wonder does this
shed any light on adversarial learning outside of the non-
parametric setting? First, let us highlight that the GBP
connection allows us to use powerful tools from compu-
tational optimal transport to compute the optimal 𝜆 and
hence the optimal adversarial strategy. Furthermore, be-
cause the adversary can only combine points that are dis-
tance at most 𝜀 away from one another, GBP appears to be
computationally easier than the classical barycenter prob-
lem. Development of efficient algorithms that take advan-
tage of the special structure of GBP is an ongoing work.
Next, GBP reveals that the optimal adversarial strategy is
strongly tied to the geometry of the data. Indeed, if 𝜆 is
an optimal solution, then one can show that every point
̃𝑥 ∈ spt(𝜆) there exists a set 𝐴 ⊂ {1, … , 𝐾} such that

̃𝑥 ∈ argmin
𝑥∈𝒳

∑
𝑦∈𝐴

𝑐(𝑥, 𝑥𝑦) for some 𝑥𝑦 ∈ spt(𝜇𝑦),

i.e., every point in spt(𝜆) is itself a barycenter (with re-
spect to the distance 𝑐) of 𝐾 or fewer points drawn from
each of the 𝜇𝑦. Hence the 𝜆 encodes local data (com-
bining nearby points in different classes to get pointwise
barycenters) as well as global data (choosing which points

from different classes to combine). Finally, there are two
ways in the non-parametric problem is still meaningful
for the above model-specific problem where the learner
is forced to choose from a parametric family of classifiers
ℱ ⊂ {𝑓 ∶ 𝒳 → 𝑆𝐾}. The key insight is the fact that we
always have the inequality

min
𝑓∶𝒳→𝑆𝒴

max
�̃�∈𝒫(𝒵)

𝔼(�̃�, ̃𝑦)∼�̃�[1 − 𝑓 ̃𝑦( ̃𝑥)] − 𝐶(𝜇, �̃�) ≤

min
𝑓∈ℱ

max
�̃�∈𝒫(𝒵)

𝔼(�̃�, ̃𝑦)∼�̃�[1 − 𝑓 ̃𝑦( ̃𝑥)] − 𝐶(𝜇, �̃�). (25)

Hence, the non-parametric setting provides a universal
lower bound on the adversarial risk and the perturbations
�̃�1, … , �̃�𝐾 , 𝜆 found in GBP are universally powerful attacks
against any classifier. As a result, 1) the computable opti-
mal �̃�𝑦 can be used as a way to generate strong adversarial
examples that could be used during training of any desired
model; 2) the optimal value of (23) can serve as a bench-
mark for robust training within any family of models and
help provide insight on how to choose the budget param-
eter 𝜀 properly.

5. Conclusions
In this paper we have discussed some recent analytic and
geometric perspectives on adversarial training. Three key
takeaways that we would like to highlight are: (1) learners
respond to adversaries by choosing more regular decision
boundaries, in particular boundaries with smaller perime-
ter (at least in the binary case), (2) adversarial training can
be formulated as a game between two players, and (3) in
the agnostic learner setting the optimal adversarial strategy
to perturb the data is given by solving a generalized ver-
sion of the Wasserstein barycenter problem. This can be
summarized more glibly as learners minimize perimeter,
adversaries find barycenters, together they arrive at a Nash
equilibrium for their zero sum game. Extending these re-
sults to more general settings is an important open ques-
tion. It would also be desirable to give finer estimates for

the smoothness of decision boundaries beyond the 𝐶1, 13

result from Theorem 2.3. While we did not discuss it in
this paper, lurking behind many of these variational prob-
lems are interesting PDEs whose analysis may shed further
light on these problems. We hope that the discussion here
will pique the interest of readers to continue adding results
in this direction. There is much to still understand about
these problems.
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