Worksheet 13

Date: 11/22/2021
Name:

Partitions and Functions

DEFINITION 1. Let n be a positive integer, and let S be a set. A partition of S is a collection of subsets $S_{1}, S_{2}, \ldots, S_{k}$ such that each element of S lies in exactly one of these subsets. In other words,

$$
S=S_{1} \cup S_{2} \cup \ldots \cup S_{k} \text { and } S_{i} \cap S_{j}=\phi \text { for any } i \neq j
$$

THEOREM 1. Let S be a set and \sim be an equivalence relation on S. Then, the equivalence classes of \sim form a partition of S.

REMARK 2. Note that the converse is also true. Let $P=\left\{A_{\alpha}: \alpha \in I\right\}$ be a partition of a nonempty set A. Then there exists an equivalence relation R defined on A such that $P=\{[a]: a \in A\}$ is the set of equivalence classes determined by R.

1. A relation R is defined on \mathbb{Z} by $x R y$ if $11 x-5 y$ is even. Then R is an equivalence relation
(a) Show R is an equivalence relation. Solution: You can show this.
(b) Determine the equivalence class of the relation R.
2. Let $A=\mathbb{Z}$. Find four different partitions of the integers.

DEFINITION 2. Let X and Y be sets. A function f from X to Y is a rule that assigns to each element $x \in X$ a single element of Y, denoted by $f(x)$ or $y=f(x)$.

DEFINITION 3. If $f: X \rightarrow Y$ is a function, then

- The set X is called the domain of f;
- The image of f is the set of all elements of Y that are equal to $f(x)$ for some $x \in X$. We write $f(X)$ for the image of f, and it is specifically,

$$
f(X)=\{f(x) \mid x \in X\}
$$

Let X be any set. We define a function $i_{x}: X \rightarrow X$, called the identity of X by

$$
i_{x}(x)=x
$$

DEFINITION 4. Let $f: X \rightarrow Y$ be a function. We say that

- f is onto or surjective if the image $f(X)=Y$. i.e, for every $y \in Y$, there exists an $x \in X$ such that $f(x)=y$.
- f is one-to-one or injective if for $a, b \in X$

$$
\text { if } f(a)=f(b) \text { then } a=b
$$

- f is a bijection if f is both surjective and injective.

1. Prove $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bijection when

$$
f(x)=\frac{3 x+5}{7} .
$$

2. Let X be a set and $f: X \rightarrow X$ be a function such that $f(f(x))=x$ for all x. Then f is a bijection.
