Quiz 2

1. (3 points) Negate the following statement:

$$\forall \epsilon > 0, \exists \delta > 0$$
, such that $\forall x \in \mathbb{R}, (|x| < \delta \Rightarrow x^2 < \epsilon)$.

$$\sim (\forall \epsilon > 0, \exists \delta > 0, \text{ such that } \forall x \in \mathbb{R}, (|x| < \delta \Rightarrow x^2 < \epsilon))$$
$$\exists \epsilon > 0 \text{ such that } \sim (\exists \delta > 0, \text{ such that } \forall x \in \mathbb{R}, (|x| < \delta \Rightarrow x^2 < \epsilon))$$
$$\exists \epsilon > 0 \text{ such that } \forall \delta > 0 \sim (\forall x \in \mathbb{R}, (|x| < \delta \Rightarrow x^2 < \epsilon))$$
$$\exists \epsilon > 0 \text{ such that } \forall \delta > 0, \exists x \in \mathbb{R}, \sim (|x| < \delta \Rightarrow x^2 < \epsilon)$$
$$\exists \epsilon > 0 \text{ such that } \forall \delta > 0, \exists x \in \mathbb{R}, \sim (|x| < \delta \Rightarrow x^2 < \epsilon)$$
$$\exists \epsilon > 0 \text{ such that } \forall \delta > 0, \exists x \in \mathbb{R} \text{ such that } |x| < \delta \text{ and } x^2 \ge \epsilon$$

2. (2 points) Prove or give a counterexample to the following: Let a, b be integers and a non zero. If $\frac{b^2}{a}$ is an integer then $\frac{b}{a}$ is an integer.

Proof. Here is a counterexample. Consider a = 4 and b = 2. In this case, $\frac{b^2}{a} = 1$ which is an integer but $\frac{b}{a} = \frac{1}{2}$ which is not an integer.

3. (2 points) Prove no odd integer can be expressed as the sum of three cubes.

Proof. Assume, to the contrary, that there exists an odd integer n which can be expressed as the sum of three even integers x, y and z. Then x = 2a, y = 2b, and z = 2c with $a, b, c \in \mathbb{Z}$. Therefore,

$$n = x + y + z = 2a + 2b + 2c = 2(a + b + c).$$

Since a + b + c is an integer, n is even. This contradicts our assumption that n is an odd integer. \Box

- 4. Circle True or False for the following questions:
 - (a) There exists integers a and b such that $(a + b)^2 = a^2 + b^2$. This statement is True. Assume $(a + b)^2 = a^2 + b^2$. Expanding the left side and simplifying we get 2ab = 0. This forces either a to be zero or b to be zero. So consider a = 1 and b = 0.
 - (b) For every integer x, there exists an integer y such that y < x. This statement is True.Let $x \in \mathbb{Z}$. Then the integer y = x - 1 has the desired property that y < x.