Worksheet 12

Date: 11/17/2021
Name:

Finishing 13.1(b)

1. Recall from last time that I attempted to use Fermat's Little theorem to show this result. It didn't follow immediately so I abandon the approach for the sake of time. Well here is the complete solution. We should that

$$
r \equiv 2 \bmod \{3,5\}, \text { and } r \equiv 27 \bmod 43 .
$$

By a proposition from the previous week we get

$$
r \equiv 2 \quad \bmod 15
$$

. So know we are asking the following question: can we find r with $0 \leq r \leq 645$ such that

$$
r \equiv 2 \quad \bmod 15
$$

$$
r \equiv 27 \bmod 43
$$

This is now similar to how we solved the first problem in our worksheet last week.

Cartesian product and Equivalence Relations

DEFINITION 1. Let A and B be sets. The Cartesian Product of A and B, written $A \times B$, is the set consisting of all the form (a, b) with $a \in A$ and $b \in B$.

Such a form (a, b) is called ordered pair of elements of A and B. Two ordered pairs are equal if each components are equal.

Example 1. Let $A=\{1,2\}$ and $B=\{0,1\}$. Find $A \times B$ and $B \times A$. From this example, does $A \times B=B \times A$?

DEFINITION 2. Let S be a set. A relation on S is defined as follows

1. Choose a subset R of the Cartesian product $S \times S$ i.e R consists of some of the ordered pairs (a, b) with $a, b \in S$.
2. For those ordered pairs $(a, b) \in R$, we write

$$
a \sim b
$$

and say a is related to b.

DEFINITION 3. Let S be a set and let \sim be a relation on S. Then we say that \sim is an equivalence relation if the following three properties hold for all $a, b, c \in S$:

1. Reflexive: $a \sim a$.
2. Symmetric: If $a \sim b$, then $b \sim a$.
3. Transitive: If $a \sim b$ and $b \sim c$, then $a \sim c$.
4. A relation R is defined on \mathbb{Z} by $x R y$, this means $x \sim y$, if $x+3 y$ is even. Then R is an equivalence relation.
5. Let $A=\{1,2,3\}$. Find a relation on A such that the relation is:
(a) reflexive, not symmetric, not transitive.
(b) symmetric, not reflexive, not transitive.
(c) transitive, not symmetric, not reflexive.
(d) reflexive, symmetric, not transitive.
(e) reflexive, transitive, not symmetric.
(f) symmetric, transitive, not reflexive.
6. Let R be an equivalence relation on a nonempty set A, and let a and b be elements of A. Then $[a]=[b]$ if and only if $a \sim b$.

Partitions

DEFINITION 4. Let n be a positive integer, and let S be a set. A partition of S is a collection of subsets $S_{1}, S_{2}, \ldots, S_{k}$ such that each element of S lies in exactly one of these subsets. In other words,

$$
S=S_{1} \cup S_{2} \cup \ldots \cup S_{k} \text { and } S_{i} \cap S_{j}=\phi \text { for any } i \neq j .
$$

THEOREM 2. Let S be a set and \sim be an equivalence relation on S. Then, the equivalence classes of \sim form a partition of S.

REMARK 3. Note that the converse is also true. Let $P=\left\{A_{\alpha}: \alpha \in I\right\}$ be a partition of a nonempty set A. Then there exists an equivalence relation R defined on A such that $P=\{[a]: a \in A\}$ is the set of equivalence classes determined by R.
(a) A relation R is defined on \mathbb{Z} by $x R y$ if $11 x-5 y$ is even. Then R is an equivalence relation
i. Show R is an equivalence relation. Solution: You can show this.
ii. Determine the equivalence class of the relation R.
(b) Let $A=\mathbb{Z}$. Find four different partitions of the integers.

