Quiz 5

1. (4 points) Use the Euclidean algorithm to find $h c f(74,383)$. Then find $s, t \in \mathbb{Z}$ such that $74 s+383 t=$ d.
Note that

$$
\begin{aligned}
383 & =5 \cdot 74+13 \\
74 & =5 \cdot 13+9 \\
13 & =1 \cdot 9+4 \\
9 & =2 \cdot 4+1 \\
4 & =4 \cdot 1+0
\end{aligned}
$$

Therefore, by the Euclidean Algorithm, we know that $h c f(74,383)=1$. Now, the previous calculations imply that:

$$
\begin{aligned}
383-5 \cdot 74 & =13 \\
74-5 \cdot 13 & =9 \\
13-1 \cdot 9 & =4 \\
9-2 \cdot 4 & =1
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
1 & =9-2 \cdot 4 \\
& =9-2(13-9)=3 \cdot 9-2 \cdot 13 \\
& =3 \cdot(74-5 \cdot 13)-2 \cdot 13=3 \cdot 74-17 \cdot 13 \\
& =3 \cdot 74-17 \cdot(383-5 \cdot 74) \\
& =-17 \cdot 383+88 \cdot 74
\end{aligned}
$$

Therefore, $s=88$ and $t=-17$.
2. (4 points) Let m, n be coprime integers, and suppose a is an integer which is divisible by both m and n. Prove that $m n$ divides a.

Proof. Let m, n be coprime integers, and suppose a is an integer which is divisible by both m and n. Then, by definition $h c f(m, n)=1$. So, by Proposition 10.3 , there exists $s, t \in \mathbb{Z}$ such that

$$
m s+n t=1
$$

Therefore,

$$
a m s+a n t=a
$$

Since m and n both divide a, we know that $m x=a$ and $n y=a$ for some $x, y \in \mathbb{Z}$. Substituting these into the equation above we have,

$$
n y m s+m x n t=a
$$

So, $n m(y s+x t)=a$ and since $y s+x t \in \mathbb{Z}$ we conclude that $m n$ divides a.
3. (2 points) Is the conclusion of 2 necessarily true if m and n are not coprime? In other words, prove or disprove the following statement: Let a, m, and n be integers such that $h c f(m, n)>1$. If $m \mid a$ and $n \mid a$, then $m n \mid a$.

The conclusion of 2 is not necessarily true if m and n are not prime. For example, let $m=6$, $n=3$ and $a=12$. Then, m divides a and n divides a. But, $m n=18$ does not divide $a=12$.

