- 1. (4 points) Let $S=\{1,2,3\}$. Write down a subset of $S\times S$ which determines a relation on S that is:
 - a. Symmetric but not transitive and not reflexive.
 - b. Symmetric and transitive but not reflexive.
- 2. (6 points) Let $S = \{(a,b) \mid a,b \in Z \text{ and } a,b \neq 0\}$. Decide if each of the following relations is an equivalence relation on S. Prove that your answer is correct.
 - a. $(a, b) \sim (c, d)$ iff a c = b d.

b. $(a, b) \sim (c, d)$ iff a + c = b + d