Worksheet 10

Date: 11/08/2021
Name:

F.T.A and Congruence of Integers

THEOREM 1 (Fundamental Theorem of Arithmetic). Every integer greater than 1 can be factored uniquely into a product of primes, up to ordering.

PROPOSITION 2. Let p be a prime. Prove \sqrt{p} is irrational

You should be able to prove the following:
PROPOSITION 3. Let p be a prime. Prove $\sqrt[n]{p}$ is irrational when $n \geq 2$.

PROPOSITION 4. Prove that the only prime of the form $n^{3}-1$ is 7 .
Note that $n^{3}-1=(n-1)\left(n^{2}+n+1\right)$.

PROPOSITION 5. Prove there is one and only one natural number n such that $2^{8}+2^{11}+2^{n}$ is a perfect square.

DEFINITION 1 (Congruence of Integers). Let m be a positive integer. For $a, b \in \mathbb{Z}$, if m divides $b-a$, we say that a is congruence to b modulo m, written as

$$
a \equiv b \quad(\bmod m)
$$

1. let us endeavor to show that 41 divides $2^{20}-1$.
2. For another example in the same spirit, suppose we are asked to find the remainder obtained upon dividing the sum

$$
\sum_{n=1}^{100} n!
$$

by 12 . Without the aid of concurrences this would be an awesome calculation.
3.

THEOREM 6 (Cancellation Law for Congruence). If $c a \equiv c b(\bmod n)$, then $a \equiv b(\bmod n / d)$, where $d=\operatorname{gcd}(c, n)$.
4. Show that if n is an odd positive integer, then 11 divides $5^{n}+6^{n}$.

