# Worksheet 1 

Date: 09/27/2022
Name:

## Definitions

DEFINITION 1 (Set).

DEFINITION 2 (union).

DEFINITION 3 (intersection).

DEFINITION 4 (set difference).

## DEFINITION 5 (subset).

DEFINITION 6 (equality of sets).

DEFINITION 7 (empty set).

DEFINITION 8 (Cartesian product).

DEFINITION 9 (cardinality).
Example 1.6 Be sure you understand why the following statements are true. Each illustrates an aspect of set theory that you've learned so far.

1. $1 \in\{1,\{1\}\}$ 1 is the first element listed in $\{1,\{1\}\}$
2. $1 \notin\{1,\{1\}\}$ .because 1 is not a set

3. $\{1\} \subseteq\{1,\{1\}\} \ldots \ldots \ldots \ldots \ldots \ldots$......................... 1 subset $\{1\}$ by selecting 1 from $\{1,\{1\}\}$
4. $\{\{1\}\} \notin\{1,\{1\}\} \ldots \ldots$. .......ause $\{1,\{1\}\}$ contains only 1 and $\{1\}$, and not $\{\{1\}\}$
5. $\{\{1\}\} \subseteq\{1,\{1\}\} \ldots \ldots \ldots \ldots \ldots$................. subset $\{\{1\}\}$ by selecting $\{1\}$ from $\{1,\{1\}\}$
6. $\mathbb{N} \notin \mathbb{N} \ldots \ldots \ldots \ldots \ldots \mathbb{N}$ is a set (not a number) and $\mathbb{N}$ contains only numbers
7. $\mathbb{N} \subseteq \mathbb{N} \ldots \ldots$ because $X \subseteq X$ for every set $X$
8. $\varnothing \notin \mathbb{N} \ldots \ldots \ldots \ldots \ldots$ because the set $\mathbb{N}$ contains only numbers and no sets
9. $\varnothing \subseteq \mathbb{N}$
because $\varnothing$ is a subset of every set
10. $\mathbb{N} \in\{\mathbb{N}\} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$. because $\{\mathbb{N}\}$ has just one element, the set $\mathbb{N}$
11. $\mathbb{N} \nsubseteq\{\mathbb{N}\} \ldots \ldots \ldots \ldots \ldots . . . . . . . . . . . .$. because, for instance, $1 \in \mathbb{N}$ but $1 \notin\{\mathbb{N}\}$
12. $\varnothing \notin\{\mathbb{N}\} \ldots \ldots \ldots \ldots \ldots \ldots$ note that the only element of $\{\mathbb{N}\}$ is $\mathbb{N}$, and $\mathbb{N} \neq \varnothing$
13. $\varnothing \subseteq\{\mathbb{N}\}$.
because $\varnothing$ is a subset of every set
14. $\varnothing \in\{\varnothing, \mathbb{N}\} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots$ is the first element listed in $\{\varnothing, \mathbb{N}\}$

15. $\{\mathbb{N}\} \subseteq\{\varnothing, \mathbb{N}\} \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots$ make subset $\{\mathbb{N}\}$ by selecting $\mathbb{N}$ from $\{\varnothing, \mathbb{N}\}$

16. $\{\mathbb{N}\} \in\{\varnothing,\{\mathbb{N}\}\} \ldots \ldots \ldots \ldots \ldots \ldots .\{\mathbb{N}\}$ is the second element listed in $\{\varnothing,\{\mathbb{N}\}\}$
17. $\{(1,2),(2,2),(7,1)\} \subseteq \mathbb{N} \times \mathbb{N} \ldots \ldots \ldots \ldots \ldots \ldots$ each of $(1,2),(2,2),(7,1)$ is in $\mathbb{N} \times \mathbb{N}$

## Practice Problems

1. Let $A=\{a, b, c\}, B=\{c, h\}, C=\{a, d\}$. Compute the "operations" below.
(a) $A \cup B$
(b) $A \cap B$
(c) $A \backslash B$
(d) $A \cap B \cap C$
(e) $A \backslash(B \cup C)$
2. For each of the following sets, list the elements. For infinite sets, list five of the elements.
(a) $\left\{x^{3}: x \in \mathbb{Z}\right\}$
(b) $\{3 x:|2 x|<3, x \in \mathbb{Z}\}$
3. Write each of the following in set-builder notation
(a) $\{1,3,5,7, \ldots\}$
(b) $\{3,6,9,12, \ldots\}$
(c) $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right\}$
4. Find the cardinality of each of the following sets.
(a) $|\{0,1, i, \pi, e\}|$
(b) $|\{\phi,\{\phi\}\}|$
5. Let $A=\{a, b, c\}, B=\{0,1\}$. For each of the following sets, list the elements.
(a) $A \times B$
(b) $B \times A$
(c) $A \times A$
(d) $A^{3}$
6. List all of the subsets of the following sets.
(a) $\{a, b\}$
(b) $\{x, y, z\}$
