WORKSHEET 1 Date: 09/27/2022 Name:

Definitions

DEFINITION 1 (Set).

DEFINITION 2 (union).

DEFINITION 3 (intersection).

DEFINITION 4 (set difference).

DEFINITION 5 (subset).

DEFINITION 6 (equality of sets).

DEFINITION 7 (empty set).

DEFINITION 8 (Cartesian product).

DEFINITION 9 (cardinality).

Example 1.6 Be sure you understand why the following statements are true. Each illustrates an aspect of set theory that you've learned so far.

1.	$1 \in \{1, \{1\}\}$ 1 is the first element listed in $\{1, \{1\}\}$
2.	$1 \not \subseteq \{1,\{1\}\}$ because 1 is not a set
3.	$\{1\} \in \{1, \{1\}\} \dots \{1, \{1\}\}$ is the second element listed in $\{1, \{1\}\}$
4.	$\{1\} \subseteq \{1, \{1\}\} \dots $
5.	$\{\{1\}\} \notin \{1, \{1\}\}$ because $\{1, \{1\}\}$ contains only 1 and $\{1\}$, and not $\{\{1\}\}$
6.	$\{\{1\}\} \subseteq \{1,\{1\}\} \dots \dots \dots \dots$ make subset $\{\{1\}\}$ by selecting $\{1\}$ from $\{1,\{1\}\}$
7.	$\mathbb{N} \notin \mathbb{N}$ \mathbb{N} is a set (not a number) and \mathbb{N} contains only numbers
8.	$\mathbb{N} \subseteq \mathbb{N} \dots$ because $X \subseteq X$ for every set X
9.	$\varnothing \notin \mathbb{N}$ because the set \mathbb{N} contains only numbers and no sets
10.	$\varnothing \subseteq \mathbb{N} . \ldots .$ because \varnothing is a subset of every set
11.	$\mathbb{N} \in \{\mathbb{N}\}$ because $\{\mathbb{N}\}$ has just one element, the set \mathbb{N}
12.	$\mathbb{N} \not\subseteq \{\mathbb{N}\} \dots \text{because, for instance, } 1 \in \mathbb{N} \text{ but } 1 \notin \{\mathbb{N}\}$
13.	$\emptyset \notin \{\mathbb{N}\}$ note that the only element of $\{\mathbb{N}\}$ is \mathbb{N} , and $\mathbb{N} \neq \emptyset$
14.	$\varnothing \subseteq \{\mathbb{N}\} \dots \dots \dots \dots \dots \dots \dots$ because \varnothing is a subset of every set
15.	$\emptyset \in \{\emptyset, \mathbb{N}\}$ \emptyset is the first element listed in $\{\emptyset, \mathbb{N}\}$
16.	$\varnothing \subseteq \{ \varnothing, \mathbb{N} \}$ because \varnothing is a subset of every set
17.	$\{\mathbb{N}\} \subseteq \{\emptyset, \mathbb{N}\} \dots \dots$
18.	$\{\mathbb{N}\} \not\subseteq \{\emptyset, \{\mathbb{N}\}\} \dots $
19.	$\{\mathbb{N}\} \in \{\emptyset, \{\mathbb{N}\}\} \dots \dots \dots \{\mathbb{N}\} \text{ is the second element listed in } \{\emptyset, \{\mathbb{N}\}\}$
20.	$\{(1,2),(2,2),(7,1)\} \subseteq \mathbb{N} \times \mathbb{N} \dots each of (1,2), (2,2), (7,1) is in \mathbb{N} \times \mathbb{N}$

Practice Problems

1. Let $A = \{a, b, c\}, B = \{c, h\}, C = \{a, d\}$. Compute the "operations" below.

(a) $A \cup B$

(b) $A \cap B$

(c) $A \setminus B$

(d) $A \cap B \cap C$

(e) $A \setminus (B \cup C)$

- 2. For each of the following sets, list the elements. For infinite sets, list five of the elements.
 - (a) $\{x^3: x \in \mathbb{Z}\}$

(b) $\{3x : |2x| < 3, x \in \mathbb{Z}\}$

- 3. Write each of the following in set-builder notation
 - (a) $\{1,3,5,7,\ldots\}$

(b) $\{3, 6, 9, 12, \ldots\}$

- (c) $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\}$
- 4. Find the cardinality of each of the following sets.
 - (a) $|\{0,1,i,\pi,e\}|$

(b) $|\{\phi, \{\phi\}\}|$

5. Let $A = \{a, b, c\}, B = \{0, 1\}$. For each of the following sets, list the elements.

(a) $A \times B$

(b) $B \times A$

(c) $A \times A$

(d) A^3

6. List all of the subsets of the following sets.

(a) $\{a, b\}$

(b) $\{x, y, z\}$