WORKSHEET 3 Date: 10/04/2022 Name:

Definitions

DEFINITION 1 (union).

DEFINITION 2 (intersection).

DEFINITION 3 (subset).

DEFINITION 4 (equality of sets).

DEFINITION 5 (Set difference).

Practice Problems

- 1. Write whether each of the following statements is true or false.
 - (a) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \text{ such that } x^n \ge 0.$

(b)
$$\forall a, b \in \mathbb{R}, (a+b)^2 = a^2 + b^2$$
.

(c) $\exists z \in \mathbb{Z}$ such that $\sqrt{z} \in \mathbb{Z}$.

(d)
$$\forall p,q \in \mathbb{Z}, \frac{p}{q} \in \mathbb{Q}.$$

(e)
$$\exists n \in \mathbb{Z}$$
 such that $\frac{n}{5} \in \mathbb{Z}$.

(f)
$$\forall \pi \in \mathbb{Q}, \pi^2 \in \mathbb{Q}$$
.

- (g) $\exists n \in \mathbb{Z}$ such that $n^2 < n$
- (h) $\exists m \in \mathbb{P}$ such that $m^2 \leq m$

- 2. Let *A* and *B* be sets. Prove that $A \cap B = A$ if and only if A = B.
 - (a) Write down the givens/assumptions in this statement. Its a biconditional statement so you should do these steps twice.
 - (b) What is the goal? Write down what you want to prove.
 - (c) Prove the statement above.

- 3. Suppose $A \subseteq B$, and $A \cap C = \emptyset$. Prove that $A \subseteq B \setminus C$.
 - (a) Write down the givens/assumptions in this statement.
 - (b) What is the goal? Write down what you want to prove.
 - (c) Prove the statement above.