WORKSHEET 4

Date: 10/06/2022 Name:

Definitions

DEFINITION 1 (union).	
DEFINITION 2 (intersection).	
DEFINITION 3 (subset).	
DEFINITION 4 (equality of sets).	
DEFINITION 5 (Set difference).	

Practice Problems

- 1. Write whether each of the following statements is true or false.
 - (a) $\forall p,q\in\mathbb{Q}, \exists r\in\mathbb{Q} \text{ such that } p\leq r\leq q.$

(b) $\exists a, b \in \mathbb{R}, (a+b)^2 = a^2 + b^2.$

(c) $\forall m, n \in \mathbb{N}, m+n \leq m \cdot n$.

- 2. Let *A* and *B* be sets. Prove that $A \cup B = B$ if and only if $A \subseteq B$.
 - (a) Write down the givens/assumptions in this statement. Its a biconditional statement so you should do these steps twice.
 - (b) What is the goal? Write down what you want to prove.
 - (c) Prove the statement above.

- 3. Let $A = \{ (\frac{1}{9})^n \mid n \in \mathbb{N} \}$, and let $B = \{ (\frac{1}{3})^n \mid n \in \mathbb{N} \}$
 - (a) Prove that $A \subseteq B$.

(b) Is *A* also a proper subset of *B*? if so, why?