Worksheet 1

Date: 10/01/2024 Name:

Producing new statements from old

Math 8 - Section 1.1 - 1.2 Worksheet

Key Terms: Proposition, Negation (denial), Conjunction, Disjunction, Truth Table, Equivalent, Tautology, Contradiction, Conditional sentence, antecedent, consequent, Converse, Contrapositive, Biconditional sentence.

For two given statements P and Q, a common way to produce a new statement from them is by inserting the word "or" or "and". The **disjunction** of the statements P and Q is the statement :

P or Q.

We usually denote this by $P \lor Q$

P	Q	$P \lor Q$
T	T	
Т	F	
F	T	
F	F	

The **conjunction** of the statements P and Q is the statement :

P and Q.

We usually denote this by $P \wedge Q$

P	Q	$P \wedge Q$
Т	Т	
Τ	F	
F	Т	
F	F	

The statement formed from two given statements in which we will be most interested is the **implication** (also called the **conditional**). For statements P and Q, the implication is the statement:

If P, Then Q.

This is denoted by $P \Rightarrow Q$.

P	Q	$P \Rightarrow Q$
Т	T	Т
Т	F	F
F	T	Т
F	F	Т

We will explain this truth table on the next couple of pages.

The **negation** of a statement *P* is the statement:

not	P
-----	---

and is denoted by $\sim P$.

Р	$\sim P$
Т	
F	

- The converse of $P \Rightarrow Q$ is $Q \Rightarrow P$.
- The **inverse** of $P \Rightarrow Q$ is the implication $\sim P \Rightarrow \sim Q$.
- The contrapositive of $P \Rightarrow Q$ is the implication $\sim Q \Rightarrow \sim P$.

(Note that this is logically equivalent to the original conditional statement. Show this via a truth table. The truth of the converse and inverse need not be dependent of the original conditional statement.)

Explanation for the implication truth table

A student is taking a math class(let's say this one) and is currently receiving a B+. He visits his instructor a few days before the final examination and asks her, " Is there any chance that I can get an A in this course?" His instructor looks through her grade book and says," If you earn an A on the final exam, then you will receive an A for your final grade". We now check the truth or falseness of this implication based on the various combinations of truth values of the statements:

P : You earn an A on the final exam.

and

Q: You receive an A for your final grade.

Which make up the implication.

Suppose first that P and Q are both true. That is, the student receives an A on his final exam and later learns he got an A for his final grade in the course. Did his instructor tell the truth?

Second, suppose that P is true and Q is false. So the student got an A on his final exam but did not receive an A as a final grade, say he received a B. Certainly, his instructor did not do as she promised(as she will soon be reminded by her student). Did his instructor tell the truth?

Third, suppose that P is false and Q is true. In this case, the student did not get an A on his final exam, but when he received his final grades, he learned that his final grade was an A. In this case, the instructor did not lie; so she told the truth.

Finally, suppose that P and Q are both false. That is, suppose the student did not get an A on his final exam, and he also did not get an A for a final grade. The instructor did not lie here either. She only promised the student an A *if* he got an A on the final exam. She promised nothing if the student did not get an A on the final exam. So the instructor told the truth.

Negation of conditional statement

Logically equivalent form of an implication statement.

P	Q	$\sim P$	$P \Rightarrow Q$	$(\sim P) \lor Q$
T	T			
Т	F			
F	Τ			
F	F			

What is the negation of the implication statement?

P	Q	$\sim Q$	$\sim (P \Rightarrow Q)$	$P \wedge (\sim Q)$
T	Т			
T	F			
F	Т			
F	F			

Prove De'Morgan's Law : $\sim (P \lor Q)$ is logically equivalent to $(\sim P) \land (\sim Q)$

P	Q	$\sim P$	$\sim Q$	$P \lor Q$	$\sim (P \lor Q)$	$(\sim P) \land (\sim Q)$
T	T					
T	F					
F	T					
F	F					

and : $\sim (P \wedge Q)$ is logically equivalent to $(\sim P) \lor (\sim Q)$

P	Q	$\sim P$	$\sim Q$	$P \wedge Q$	$\sim (P \wedge Q)$	$(\sim P) \lor (\sim Q)$
T	T					
T	F					
F	T					
F	F					

If you had three statements P,Q and R, how many rows will your truth table have? What about n statements?

Negation

- We write \exists to mean "there exists". Example: $\exists x \in \mathbb{Z} \ni x + 1 = 0$ reads "there exists x in the integers such that x + 1 = 0.
- We write ∀ to mean "for all". Example: ∀*x* ∈ ℤ, −*x* ∈ ℤ reads " for all *x* in the integers, −*x* is in the integers".
- Whats the negation of the statements above?
- Negation of \leq is >
- 1. Negate the following statements:
 - (a) $\forall n \in \mathbb{Z} \ni n$ is an odd prime, *n* is odd.
 - (b) $\exists x, y \in \mathbb{Z}$ such that $x + y \notin \mathbb{Z}$.
 - (c) $\exists x \in \mathbb{Z}$ such that $\forall n \in \mathbb{Z}, x \neq n^2 + 2$
 - (d) Let *A* and *B* be non empty sets. What is $\sim (A \subseteq B)$. Recall the definition of a subset:

$$\forall x \in A, x \in A \Rightarrow x \in B.$$

- 1. Which of the following are propositions? If it is a proposition, give the propositional form and truth value.
 - (a) $\frac{x}{2}$ is a rational number,
 - (b) Go to bed.
 - (c) Either π is rational and 17 is prime, or 7 < 13 and 81 is a perfect square.
 - (d) Is is not the case that 39 is prime, or that 64 is a power of 2,
 - (e) While the number π is greater than 3, the sum $1 + 2\pi$ is less than 8.
- 2. Determine the truth value of $P \land Q$ and $P \lor Q$.
 - (a) P: "The moon is larger than the Earth.", Q: " $4^3 = 16$."
 - (b) P: "All roses are red.", Q: "72 is not prime."

3. Determine if the pairs of propositional forms are equivalent using a truth table.

(a) $\sim P \wedge \sim Q$, $\sim (P \wedge \sim Q)$

(b) $(P \land Q) \lor R, P \lor (Q \land R)$

4. If P, $\sim S$, Q, $\sim K$, R are true. Determine the truth value of the following propositional forms.

(a)
$$(P \lor Q) \land (R \lor S)$$

(b) $(\sim P \lor \sim Q) \lor (\sim R \lor K)$

(c)
$$(P \lor S) \land (P \lor R)$$

5. Make a truth table for the following formulas: $(S \lor G) \land (\sim S \lor \sim G)$

Practice Problems

1. Prove the empty set is unique.

2. Show that the empty set is a subset of every set.

3. Let *A* and *B* be sets. If $B \subseteq A$, then $A \cup B = A$.

4. Let x ∈ Z. If x is even, then x² is even.
Prove the converse of the statement.
Hint: use the contrapositive of the statement.