Math 8 Extra Problems

Date: Summer 2021
Name: Euler

1. Prove that there do not exist positive integers a, b, c and n such that

$$
a^{2}+b^{2}+c^{2}=2^{n} a b c .
$$

2. Find all functions f which satisfy the three conditions
(a) $f(x, x)=x$
(b) $f(x, y)=f(y, x)$
(c) $f(x, y)=f(x, x+y)$
assuming that the variables and the values of f are positive integers.
3. If $\operatorname{gcd}(a, b)=1$, prove that
(a) $\operatorname{gcd}(a-b, a+b) \leq 2$,
4. Prove that if for integers a and b we have $7 \mid\left(a^{2}+b^{2}\right)$, then $7 \mid a$ and $7 \mid b$.
5. Prove that for positive integer n we have $n^{2} \mid(n+1)^{n}-1$
6. Prove that there is no polynomial with integer coefficients $p(x)$ with the property $p(7)=5$ and $p(15)=9$.
7. prove or disprove: If a and b are odd integers, then $4 \mid(a-b)$ or $4 \mid(a+b)$.
8. Prove that if m and n are natural numbers that

$$
3^{m}+3^{n}+1
$$

cannot be a perfect square.
9. Prove that every integer greater than 6 can be represented as a sum of two integers greater than 1 which are relatively prime.

