1. Compute the following integrals:

(a)
$$\int \left(e^{3x} - 3x^3\right) dx$$

(b)
$$\int (x^2 + 2x + 1) dx$$

(c)
$$\int \left(e^{-x} - e^x + \frac{1}{x}\right) dx$$

- 2. Let $f(x) = x^3 3x$. (You might need a calculator for this problem)
 - (a) Compute $\int_{-1}^{0} f(x) dx$

(b) Compute a right Riemann approximation of $\int_{-1}^{0} f(x) dx$ with 6 rectangles. Recall that the right Riemann sum is

Recail that the right Riemann sum

$$\sum_{n=1}^{6} \left(\Delta x f(a + n \Delta x) \right)$$

where $\Delta x = \frac{b-a}{k}$. Lets be smart and denote $x_n = a + n\Delta x$. Then we have the following $f(x) = x^3 - 3x, a = -1, b = 0$ and k = 6. Thus, we get $\Delta x = \frac{1}{6}$ and $f(x_1) = f(\frac{-5}{6}) = \frac{415}{216}$ $f(x_2) = f(\frac{-2}{3}) = \frac{46}{27}$ $f(x_3) = f(\frac{-1}{2}) = \frac{11}{8}$ $f(x_4) = f(\frac{-1}{3}) = \frac{26}{27}$ $f(x_5) = f(\frac{-1}{6}) = \frac{107}{216}$ $f(x_6) = f(0) = 0$

Finally, we sum all these up and multiply by $\frac{1}{6}$. The answer is now

$$\frac{1}{6}\left(\frac{415}{216} + \frac{46}{27} + \frac{11}{8} + \frac{26}{27} + \frac{107}{216}\right) = 1.076$$

(c) Compute a left Riemann approximation of $\int_{-1}^{0} f(x) dx$ with 6 rectangles

(d) Compute a midpoint Riemann approximation of
$$\int_{-1}^{0} f(x) dx$$
 with 6 rectangles

- 3. Find the following averages:
 - (a) 13 between x = -6, 249, 837 and x = 123, 456, 789

(b) x^2 between x = 0 and x = 1.

(c) x^2 between x = -1 and x = 1.

(d) e^{3x} between x = -t and x = t.