Homework 5

Date: $2 / 11 / 21$
Name:

1. Compute the principle value of the arguments of the following complex numbers:
$1+i, \frac{1}{2}+i \frac{\sqrt{3}}{2},(1+i)^{3},\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{243},(1+i)^{2}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)^{3}$
2. Let $\arg z$ denote the principle value of the argument for $z \neq 0$, that is, $-\pi<\arg z \leq \pi$. For real, x, y with $x<0$ show:
(i) $\lim _{y \rightarrow 0} \arg (x+i|y|)=\pi$
(ii) $\lim _{y \rightarrow 0} \arg (x-i|y|)=-\pi$

Compute the corresponding limits when $x=0$ and when $x>0$.
3. Compute the following principal logarithms: $\log (3 i), \log (-2 i), \log (1+i), \log (-1), \log \left(z^{10}\right)$ where $z=2 e^{i \pi / 3}, \log (x)$ for real $x \neq 0$.
4. For $z_{1}, z_{2} \neq 0$ show that

$$
\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right)+2 n \pi i
$$

where n is an integer that need not be zero. Specify the value that n may take. Show that a logarithm of $z_{1} z_{2}$ is of the form

$$
\log \left(z_{1}\right)+\log \left(z_{2}\right)
$$

provided that appropriate values of the logarithms are taken.
5. Let n be a positive integer. A complex number ω is said to be an nth roof of unity if $\omega^{n}=1$.
(i) Find all nth roots of unity in polar coordinates and draw a picture.
(ii) For $n=2,3,4$ express the nth roots of unity in the form $x+i y$.
(iii) If ω_{1}, ω_{2} are nth roots of unity, show that the following are also nth roots of unity:

$$
\omega_{1}^{n} \quad \omega_{1} \omega_{2} \quad \omega_{1} / \omega_{2}
$$

(iv) For given $r, \theta \in \mathbb{R}(r>0)$, find all $z \in \mathbb{C}$ such that

$$
z^{n}=r e^{i \theta}
$$

(v) If $z_{1}^{n}=z_{2}^{n}$, show that $z_{1}=\omega z_{2}$ where ω is an nth root of unity.
6. For $z, \beta \in \mathbb{C}, z \neq 0$, define the principal value of z^{β} to be

$$
z^{\beta}=e^{\beta \log (z)}
$$

Compute the principal values of the following powers:

$$
\begin{gathered}
1^{\sqrt{2}}(-2)^{\sqrt{2}} \quad i^{i} \quad 2^{i} \quad(3-4 i)^{1+i} \quad(3+4 i)^{5} \\
(-2)^{\sqrt{2}}=e^{\sqrt{2}(\ln (2)+i \pi}=e^{\sqrt{2} \ln (2)} e^{(i \sqrt{2} \pi)}
\end{gathered}
$$

Remember that we are considering the principle branch. So our angle needs to be:

$$
\sqrt{2} \pi-2 \pi
$$

7. Draw the following paths and specify all the continuous choices of arguments along them:
(i) $\gamma(t)=2 e^{-i t}(t \in[0,4 \pi])$
(ii) $\gamma(t)=t+i(1-t)(t \in[0,1]$

This is a straight line path from i to 1 . The claim is the following:

$$
\theta(t)= \begin{cases}\arctan \left(\frac{1-t}{t}\right) & , t \in(0,1] \\ \frac{\pi}{2} & , t=0 .\end{cases}
$$

Now check that $e^{i \theta(t)}$ satisfies our criteria. When $t \in(0,1]$ we get

$$
e^{i \arctan \left(\frac{1-t}{t}\right)}=\cos \left(\arctan \left(\frac{1-t}{t}\right)\right)+i \sin \left(\arctan \left(\frac{1-t}{t}\right)\right)
$$

Verify by using the facts about trigonometry
(iii) $\gamma(t)=t-1+i t^{2}(t \in[-1,1])$

$$
\theta(t)= \begin{cases}\pi+\arctan \left(\frac{t^{2}}{t-1}\right) & , t \in[-1,1) \\ \frac{\pi}{2} & , t=1\end{cases}
$$

(iv) $\gamma(t)= \begin{cases}t+i(1-t) & \text { if } t \in[0,1] \\ 1+i(1-t) & \text { if } t \in[1,2]\end{cases}$

In each case compute the winding number of the path round the origin.

