
HOMEWORK 5
Date: 2/25/21

Name:

8.8.3 Let

γ1(t) =−1+
1
2

eit(t ∈ [0,2π])

γ2(t) = 1+
1
2

eit(t ∈ [0,2π])

γ(t) = 2e−it(t ∈ [0,2π]

(1)

If f (z) = 1/(z2−1) use theorem 8.9 to deduce that∫
γ

f =
∫

γ1

f +
∫

γ2

f

Interpret this statement in terms of the winding numbers of γ,γ1,γ2 round 1,−1.

First, find the winding number of the compliment of our region. So z =±1. Show that the sum of the
winding number is zero. By the theorem you get∫

γ1

f (z)dz+
∫

γ2

f (z)dz+
∫
−γ

f (z)dz = 0

Use the partial fraction technique to show

1
z2−1

=
1

2(z−1)
− 1

2(z+1)

Now, this tells you about the winding. In summary, the winding numbers of γ at -1 and 1 is equal to
the sum of the difference between the winding numbers of γ1 and γ2 about -1,1.
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8.8.4 Show that D = {z ∈ C : z 6=±1} is not simply connected. Let

L1 = {x+ iy ∈ C : y = 0,x≤−1}
L2 = {x+ iy ∈ C : y = 0,x≥ 1}
D0 = D\{L1∪L2}

(2)

Show that D0 is simply connected. Is it a star domain? Does f (z) = 1/(z2−1) have an antiderivative
in D0? In each case justify your answer.

Show that the contour of a disc of radius 1 around 1 is not equal to zero when f = 1/(z2− 1). Use
theorem 8.12 to show it is not simply connected. D0 is a star domain, this was a previous homework
problem. Use Corollary 8.4 to show and theorem 8.12 to show D0 is simply connected. What theorem
now tells you that f has an antiderivative in D0? or you can construct the antiderivative explicitly.

Page 2 of 10



8.8.6 Let D = {z ∈ C : z 6=±i} and let γ be a closed contour in D.

Find all the possible values of
∫

γ
1/(z2 + 1)dz. If σ is a contour from 0 to 1, find all possible values

of
∫

σ
1/(z2 +1)dz.

The way I answered this question in section is not very efficient. It is correct but not what the author
wanted. Use partial fractions on our function 1/(z2 + 1). You will see that we get the difference of
the winding numbers. The same answer as we got in section.

Consider the contour [0,1] and the following contour: {i+ eit , (t ∈ [−π/2,3π/2]}+[0,1]. Are these
two contours the same? Most students put that our path is independent but that is not the case. If it
was independent then any integral of a closed contour must be zero, but that is not the case. Some
students also said we have an antiderivative in our domain but that is also not the case. A local anti
yes but we are looking for a global one in our domain.
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8.8.7 Let γ1 = S1 +L−S2−L,γ2 = S1 +L+S2−L, where

S1(t) = eit(t ∈ [0,2π])

S2(t) = 2eit(t ∈ [0,2π])

L = [1,2]

(3)

Describe the inside and outside of γ1 and γ2. Let f (z) = cos(z)/z. By writing cos(z) as a power series
and considering f (z) = 1/z+ g(z), or otherwise, compute

∫
γ1

f and
∫

γ2
f . Compare the results with

theorem 8.10.

This one is straight forward so nothing needs to be said.
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8.8.8 Let D = C \ {z1, . . . ,zk} where z j ∈ C, and suppose that f is differentiable in D. Show that for any
closed contour in D, ∫

γ

f =
k

∑
r=1

nr

∫
Sr

f

where Sr is a sufficiently small circle centre zr and nr is an integer. If limz→zr f (z) = ar ∈ C for
r = 1, . . .k show that ∫

γ

f =
k

∑
r=1

2πinrar

For the first part you will need induction. To use the induction step you need to split the contour into
two contours where ”cancellation of paths” is used. For the second part use the first part and then
induction. We went over this in section so I don’t plan to write an entire solution. The key fact is the
following

2πi =
∫

sr

1/(z− zr)dz
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10.9.1 Find the Taylor series at 0 of f (z) = Log(1+ z), where Log is the principal value. What is the disc of
convergence? Answer the same questions for

g(z) = eαLog(1+z) where α ∈ C

use the fact that 1
1+z = ∑(−z)n is valid for |z| < 1. Integrate this and explain why its valid to do so

and what the radius of convergence of the new series is. For the second part, us the definition of the
Taylor series to find each coefficients. Why is our radius of convergence 1?
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10.9.3 Taylor expand the following functions around 0, and find the radius of convergence.
Solutions: note that we can find the coefficients of our Taylor series by the definition, or we can use
the fact that a Taylor series is unique. I will use the latter method.

(i) sin2(z)

Use the fact that sin2(z) = 1−cos(2z)
2 and expand this series. The radius of convergence is the

whole complex plane.

(ii) z2(z+2)−2

Write 1
z+2 as 1

2(1+z/2) =
1
2 ∑(−1)n(z/2)n = g(z). This expansion is valid when |z| < 2. Differ-

entiate g(z) and multiply by z2. Why does this new power series have radius of convergence
|z|< 2?

(iii) (az+b)−1,(a,b ∈ C,b 6= 0)
(az+b)−1 = 1

b(1+az/b) . Expand like we did in ii. You can find the radius of convergence of this.

(iv)
∫ z

0 ew2
dw

ew2
= ∑

(w2)n

n! which is valid in the whole complex plane. Now, why can you swap the integral
and sum? Answer: we know that our series converges uniformly to our function in our radius of
convergence. This is an important fact.

(v) {
sin(z)/z ,z 6= 0
1 ,z = 0.

Our function is differentiable at z = 0 which means we have a power series centered at z = 0.
Expand the series for sin(z)/z. From the uniqueness of the Taylor series we have that the series
our series is the Taylor series of sin(z)/z. Why is the radius of convergence the whole complex
plane?

(vi)
∫ z

0 sin(w)/wdw
Use the expansion from v and integrate.
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10.9.4 Define the numbers cn by the Taylor series

sec(z) =
∞

∑
n=0

(−1)n c2n

(2n)!
z2n

Prove that

c0 = 1

0 = c0 + c2

(
2n
2

)
+ c4

(
2n
4

)
+ . . .+ c2n

(
2n
2n

)
(4)

Show that c2n is always an integer and calculate it for n≤ 5.

Multiply both sides by cos(z) and expand cos(z) in terms of its power series. On page 71 of our
book it tells you how to find the coefficients for the product of two power series. The equation in (4)
follows from this. Use the second principle of mathematical induction to show the coefficients are
always integers. You can calculate the first couple of c2n by the definition of Taylor series or using
(4).
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10.9.5 Let
(1− z− z2)−1 = ∑Fnzn

Prove that
F0 = F1 = 1 Fn = Fn−1 +Fn−2 (n≥ 2)

This is the recursive definition of the Fibonacci numbers 1,1,2,3,5,8,13 . . . By expanding

(1− z− z2)−1 in partial fractions, prove that

Fn =
1√
5

(1+
√

5
2

)n+1

−

(
1−
√

5
2

)n+1


This one is straight forward so not much is needed.
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10.9.8 Let f (z) have Taylor series ∑anzn for |z|< R. Let ω = e2πi/3 and define

g(z) =
1
3
( f (z)+ f (ωz)+ f (ω2z))

Show that
g(z) = ∑a3nz3n

for |z|< R. Find similar expressions for ∑a3n+1z3n+1 and ∑a3n+2z3n+2. (Hint: 1+ω +ω2 = 0)

Find the Taylor series for each ( f (z), f (ωz), f (ω2z)) combine the terms to get g and use the hint.
Why does f (ωz), f (ω2z)) have radius of convergence R?

∑bkzk =
1
3
( f (z)+ω

2 f (ωz)+ω f (ω2z))

∑ckzk = f rac13( f (z)+ω f (ωz)+ω
2 f (ω2z))

Match the corresponding series to the expressions above.
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