
MATH 122A HOMEWORK 3
Due date: 1/28/21

Name:

3.6.6 Find the radius of convergence of the following series:

(i) ∑zn/n

(ii) ∑zn/n!

(iii) ∑n!zn

(iv) ∑znnk where k is a positive integer.

(v) ∑zn!
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3.6.8 Find the radius of convergence of the following series:

(i) z− z3

3! +
z5

5! −
z7

7! + . . .

(ii) 1− z2

2! +
z4

4! −
z6

6! + . . .

(iii) z− z2

2! +
z3

3! −
z4

4! + . . .

(iv) 1− z2

2 + z3

3 −
z4

4 + . . .

(v) 1+az+ a(a−1)
2! z2 + . . .+ a(a−1)···(a−n+1)

n! zn + . . .

(Note that in part (iv) the radius of convergence may differ for different values of a. )
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3.6.12 Prove that if each of the series ∑anzn,∑bnzn and ∑anbnzn has radius of convergence equal to 1, then
the series ∑anb2

nzn and ∑a2
nbnzn.

Common mistake: Remember that we are give that the radius of convergence of ∑anzn is 1. This
means

1
limsupn→∞ |an|1/n = 1.

This tells us nothing about the ratio test for an, i.e.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Recall an important fact from analysis: assume an and bn are positive real sequences, then

limsupanbn ≤ limsupan limsupbn.

With this fact you can show that 1 is a lower bound for the radius of convergence. Now, how can you
bound the radius of convergence from above? You should use the given some how. Notice that we are
not guaranteed that we can distribute the limit into each sequence as we did in the previous homework
set. We were allowed to do it before because we had conditions which made the limit nice enough.
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3.6.15 Suppose that the power series ∑
∞
n=0 anzn has a recurring sequence of coefficients: that is, an+k = an

for some fixed positive integer k and all n. Prove that the series converges for |z| < 1 to a rational
function p(z)/q(z) where p,q are polynomials, and that the roots of q are all on the unit circle. What
happens if an+k = an/k?
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4.7.2 Show that f (z) = |z| is continuous everywhere and differentiable nowhere. Show that f (z) = |z|2 is
continuous everywhere and differentiable at the origin but nowhere else.
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4.7.4 Let

fn(z) = (1+
z
n
)n

Show that

f ′n(z) = fn−1

(
(n−1)z

n

)
What do you notice as n→ ∞?
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4.7.6 Let f (z) be a polynomial in z ∈ C. Prove that the function g(z) = f (z) is differentiable everywhere,
but that h(z) = f (z) is differentiable at 0 if and only if f ′(0) = 0.

We give a couple of proofs for this result. We also prove a more general statement. The first proof
might be what the book intended to be honest. The second proof holds for entire functions, with a
slight condition. The third proof holds for certain domains with the proof identical to two. Lastly, we
give a power series proof.

Proof. Assume f is a polynomial. Then there exists a natural number n such that

f (z) =
n

∑
j=0

a jz j.

By the properties of conjugation

g(z) = f (z) =
n

∑
j=0

a jz j

g(z) is a polynomial with complex coefficients. Hence, g is differentiable; moreover, its derivative is

g′(z) =
n−1

∑
j=0

j(al)z j

Assume f is an entire function and each component of f has continuous partial derivative. Then
g(z) = f (z) is differentiable everywhere

Proof. Assume f is entire. Then there exist u(x,y) and v(x,y) such that f (x+ iy) = u(x,y)+ iv(x,y)
whose partials exist, are continuous, and satisfy the Cauchy Riemann equations. Then

g(z) = u(x,−y)− iv(x,−y).

Show that the Cauchy-Riemann equations for g hold each component of g yields continuous partial
derivatives with the partial derivatives also existing. All of this should follow from functions u and v
and our assumption. The proof of the main statement now follows since a polynomial satisfy all these
conditions.

Proof. Let A be an open subset of C. Define B = {z|z ∈ A}. Assume f is an analytic on A and each
component of f has continuous partial derivative. Then g(z) = f (z) is analytic on B. Follow the same
proof as the previous one. Now when our function is a polynomial the result holds.

Proof. Assume f is a polynomial. Then there exists a natural number n such that

f (z) =
n

∑
j=0

a jz j =
∞

∑
k=0

bkzk.

Where bk = an for k ∈ {0,1 . . .n} and bk = 0 for k > n. Now, the radius of convergence of the power
series of f is all of the complex numbers.

Consider
g(z) = f (z)
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Then,

g(z) =
∞

∑
k=0

bkzk.

Can you find what the radius of convergence for the power series related to g is?

For the second part, if h is differentiable at 0 then use the Cauchy-Riemann equations to show the
derivative of f at zero is zero. [You can actually show a stronger statement. That f has to be constant.]
To prove the converse many people where reversing there logic. Remember one key fact, the partials
of the components of f must be continuous. You get this for free if f is a polynomial. In fact, this
will always be true if f is differential in an open ball. But this fact wont come till later.
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4.7.7 In each of the following cases, for f defined on the domain D, find the explicit formulas for u(x,y),v(x,y)
where f (z) = u(x,y)+ iv(x,y), where z = x+ iy and all of x,y,u,v are real.

(i) f (z) = 1/z,D = {z ∈ C : z 6= 0.

(ii) f (z) = |z|,D = C.

(iii) f (z) = z,D = C.
Show that u,v satisfy the Cauchy-Riemann Equations everywhere in (i) and nowhere in (ii),(iii).
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4.7.9 For z = x+ iy, let

f (z) =

{
x3(1+i)−y3(1−i)

x2+y2 if z 6= 0

0 if z = 0

Show that f is continuous at the origin, the Cauchy-Riemann Equations are satisfied there, yet f ′(0)
does not exist. Why does this not contradict Theorem 4.12?

Proof. For continuity, you use the epsilon delta definition or change it to polar coordinates and let the
radius approach zero. To find the partial derivatives of f use the limit definition for partial derivatives.
Show f ′(0) doesn’t exist. And lastly, this doesn’t contradict theorem 4.12 since its partials are not
continuous at zero.
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