Math 122A Exam REVIEW

Date: 3/11/21
Name: Mogarth
I want to make something very clear, these questions are my bias opinion of what questions I would study. The emphasis is on the I.

1. Prove or disprove that

$$
\int_{0}^{2 \pi} e^{e^{i \theta}} d \theta=0
$$

2. Let $f=\frac{1}{z^{4}+z^{2}+1}$
(a) Find the radius of convergence of the Taylor series of f at $z=1$.
(b) Explicitly find the constant and linear term of the series.
3. Evaluate the integral

$$
\frac{1}{2 \pi} \int_{\gamma} \frac{z e^{z}}{(z-a)^{3}} d z
$$

Assuming the point a lies inside the simple closed curve γ.
4. Let $f(z)$ be an entire function. Assume $|f(z)| \geq 1$ for all z. Show f is constant.
5. Suppose that $f(z)$ is analytic on \mathbb{C} and that there exists constants $A>0$ and $B>0$ such that $|f(z)| \leq A|z|^{1 / 2}+B$ for all $z \in \mathbb{C}$. What can you say about $f(z)$?
6. Suppose that f is entire and that

$$
\lim _{z \rightarrow \infty} \frac{f(z)}{z}=0 .
$$

Prove that f is constant.
7. Prove that

$$
\int_{0}^{\pi} e^{\cos \theta} \cos (\sin \theta) d \theta=\pi
$$

Hint: consider $\int_{\gamma}\left(e^{z} / z\right) d z$, where γ is the unit circle.
8. Let $f(z)$ be an entire function such that $\left|f^{\prime}(z)\right|<|f(z)|$ for all $z \in \mathbb{C}$. Show that there exists a constant K such that $|f(z)|<K e^{|z|}$ for all $z \in \mathbb{C}$.
9. Prove that an entire function with a positive real part is constant. [Prove this at least two different ways].
10. Let f and g be entire functions in the complex plane. Let $a \in \mathbb{R}$ be an arbitrary constant.
(a) Show that if $[\operatorname{Re}(f)]^{2} \leq[\operatorname{Im}(f)]^{2}$, for all $z \in \mathbb{C}$, then f is a constant function.
(b) Show that if for all $z \in \mathbb{C}, \operatorname{Ref}(z) \leq k \operatorname{Reg}(z)$ for some real constant k (independent of z). Then there are constants a, b such that

$$
f(z)=a g(z)+b .
$$

11. Prove or disprove. If f is entire and is bounded on the real axis, then f is constant.
12. Find the Laurent series expansion of the function: $f(z)=e^{z} /(z+1)^{2}$ centered at $z=-1$
13. Find the Laurent series of f valid within the annulus $\{z \in \mathbb{C}: 1<|z-1|<3\}$ and

$$
f(z)=\frac{1}{z(z+2)} .
$$

