
MATH 122A HOMEWORK 2
Due date: 1/21/21
Name:Nacho Libre

2.10.9 Let S be a subset of C. If z,w ∈ S, define z∼ w if and only if there is a path from z to w. Show that ∼
is an equivalence relation. The equivalence classes are components of S. If S is open and non-empty,
show that each component is a domain.

Proof. The point of this question was to construct the paths needed. I am considering my paths to start
from the unit interval. If you choose to start from a different interval you need to adjust the function
accordingly.

z∼ z: The path for reflexive is the constant function f (t) = z

If z ∼ y, then y ∼ z. If f (t) is the path from z to y, then consider the function g(t) = f (1− t). Show
the necessary conditions for this to be a path.

If z∼ y, and y∼ w then z∼ w. Let f be the path from z to y and g be the path from y to w. Consider
the following function:

h(t) =

{
f (2t) if 0≤ t ≤ 1

2

g(2t−1) if 1
2 ≤ t ≤ 1

.

Show that h(t) is our desired path.

Since S is non empty there exist a component of S since we have the reflexive property. Let [z] be
the equivalence class of our component. Now, each component is path connected. (Why can we say
this?) Since S is open, there exist an open ball around z. We showed in class that open balls are path
connected. Hence, there exists some other element in our component, lets call this point y. Since S
is open there exist an open ball around y which is strictly contained in S. We know that y ∼ z. And
each point in this open ball is related to y since open balls are path connected. Then each point in the
open ball is related to z by transitivity. Ergo, the open ball around y is a subset of [z]. Since y was an
arbitrary element in [z] this proves that each component is open and therefore a domain.
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2.10.10 Let S be a path-connected subset of C, and let f : S→ C be a continuous function. Prove that f (S) is
path-connected (even though it may not be open).
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2.10.12 Let S be a subset of C. A point z ∈C is a boundary point of S if z is a limit point of S and also a limit
point of the complement of C\S. The boundary ∂S of S is the set of all boundary points of S. In the
following cases, describe ∂S and state whether ∂S is path-connected. Draw a picture in each case.

i S = {z ∈ C : 1 < |z|< 2}
ii S = {z ∈ C : z 6= 0}

iii S = {z ∈ C : z = x+ iy where x,y ∈Q}
iv S = {z ∈ C : 0≤ re z≤ 1,0≤ im z≤ 1}
v S = the intersection of the sets S in (iii) and (iv)

vi S = {z ∈ C : z 6= iy where y ∈ R,y≤ 0}
vii S = the intersection of the sets S in (vi) and (ii)
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3.6.2 For what values of z ∈ C does each of the following sequences converge?

i (zn)

Proof. We prove a small claim:

CLAIM 1. Let θ ∈ R, then cos(nθ) converges to 1 or -1/2.

Proof. Assume cos(nt) converges to a. Then every subsequence also converges to a. By the
double angle formula, we get:

lim
n→∞

cos(2nt) = lim
n→∞

(2cos2(nt)−1) ⇒ a = 2a2−1

So our sequence cos(nt) can only converge to 1 or−1/2. And this is true for any real number.

CLAIM 2. Let θ ∈ R. If eniθ converges then sin(nθ) converges to 0 and cos(nθ) converges to 1.

Proof. Use the double angle formula for sin

You can apply the root test and conclude that our sequence convergence in the unit circle. Another
way to do this is the following. Let z = reiθ for some θ ∈ R. Then zn = rneinθ = rn cos(nθ)+
irn sin(nθ). You can see that we only care about the case when r = 1 since the other cases hold
from real analysis. Hence, we have to consider when z = e2πit where t ∈ [0,1] We need to break
this question into two cases.

[Case 1] The first case is to assume t ∈ [0,1] and is rational. This tells use that our sequence are
made up of roots of unity. Why does this sequence not converge when t /∈ {0,1}?.

[Case 2] This is where I have to wave my hands at a proof here. I didn’t expect an in depth
proof from you all. I would have excepted a geometric heuristic argument. Assume t ∈ [0,1] and
irrational. Consider the map f (x) = e2πix and x an irrational in the interval [0,1]. Then f is a
continuous map and surjective onto the unit circle. So f sends dense sets to dense sets. So this
is where the hand wavy part comes in [show that the lim sup and lim inf are different]. Or, we at
least know that if each of these converge then cos(2πnt) must go to 1 and sin(2πnt) must go to
zero. Try to convince yourself that this can’t happen. But we are not in a real analysis class so its
okay to move on already.

ii (zn/n)

Proof. You can use the ratio or root test to conclude that our sequence converges on |z| < 1. If
you break it up into real and imaginary parts you should use the following fact, which is not to
hard to believe:

LEMMA 3. Let an and bn be two real sequences. Assume an converges to zero and bn is bounded,
then the sequence anbn converges to zero.

LEMMA 4. Let an and bn be two real sequences. Assume an is unbounded and bn has a subse-
quence bounded away from zero, then the sequence anbn diverges.

This leads to the case were we are on the unit circle. Use lemma 3 and the claim from part 1 to
show cos(nt)

n converges for any real number t. You also need to consider sin(nt)
n also converges. This

shows our sequence converges for any point in the closed unit disk since its real and imaginary
parts converge.
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iii (n!zn)

iv (zn/n!)

v (zn/nk) where k is a positive integer.

vi (a(a−1) · · ·(a−n+1)zn/n!) where a is a fixed complex number.

Proof. When a∈N our sequence converges for any complex number z. For a not a natural number
use the ratio test. When |z|= 1 it is left to you.
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3.6.9 Show that ∑
∞
n=1 zn! converges for |z| < 1, but diverges for infinitely many z with |z| = 1. [We give a

couple proofs for this question.]

Lets tackle the case when |z| 6= 1. Applying the ratio or root test confirms the series converges for
|z|< 1. If you want to think of this as a power series centered at zero then you need to do a little more
work. What are the an terms? Answer, they should be either a zero or a one. Now you need to use the
limsup definition. You can explicitly find the sequence. Now let us consider when |z|= 1.

Proof. Let z = e
2πip

q , p,q ∈ N,(p,q) = 1. Then zn! = 1 whenever n≥ q. Therefore,

∞

∑
n=1

zn =
q−1

∑
n=1

zn +
∞

∑
n=q

zn =

Clearly the tail of the series goes to infinity. So the series does not converge.

Proof. Let z = e
2πi
k ,k ∈ N. Then zn! = 1 whenever n ≥ k. Therefore, the limit does not converge to

zero. By the nth term test this diverges.

Proof. Let |z| = 1, then z = cos(θ)+ isin(θ) for θ ∈ [0,2π]. Then zn! = cos(n!θ)+ isin(n!θ) It is
enough to show limn→ cos(n!θ) does not converge to zero.[Why is this so?]. Again, this involves
more real analysis. If you are feeling nostalgic about real analysis take a crack at proof. If everything
works well you can say by the nth term test, our series diverges.

Proof. Let S1 = {z ∈ C : |z| = 1}. You can show that this is a group. Any two products of this set
will stay in the set by the closure property of a group. So for any z ∈ S1 and n ∈ N,zn ∈ S1. Then
zn! = (zn)(n−1)! ∈ S1. Therefore, by the nth term test limn→∞ zn! 6= 0.

Proof. We need a lemma first:

LEMMA 5. Let zn be a complex sequence where zn = xn + iyn and xn,yn are real sequences. Then
limn→∞ zn = 0 ⇐⇒ limn→∞ |zn|= 0.

Proof. Assume (⇐) holds. Let ε > 0. Then, ∃ N ∈ N such that for n > N ||zn|−0| < ε . Now
0≤ x2

n + y2
n = |zn|< ε2. Then 0 ≤ |x|2 = |x2|< ε2⇒ 0≤ |x|< ε . The argument for yn is symmetric

⇒ zn→ 0 as n→ ∞.

Assume (⇒) holds. Let ε > 0. Then ∃ N ∈ N such that for n > N |zn− 0| < ε . Which is the same
thing as writing 0≤ |zn|< ε ⇒ 0−0≤ |zn|−0 < ε−0⇒ 0 < ||zn|−0|< ε.

Now, we are assuming z lies on the unit circle so |z|= 1. Then

limn→∞|z|n! = limn→∞1n! = 1.

By Lemma 5 and the nth term test this series diverges for any point on the unit circle.
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3.6.10 Suppose that ∑anzn has radius of convergence R and let C be the circle {z ∈ C : |z| = R}. Prove or
disprove the following ( which may or may not be true).

i If ∑anzn converges at some point on C then it converges everywhere on C.

ii If ∑anzn converges absolutely at some point on C then it converges everywhere on C.

iii If ∑anzn converges at every point on C, except possibly one, then it converges everywhere on C.
(Hint: the series ∑zn/n could prove useful in this question.)
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3.6.11 If ∑anzn has a radius of convergence R, use the formula 1/R = limsup |an|1/n to find the radius of
convergence of:

i ∑n3anzn

ii ∑anz3n

iii ∑a3
nzn
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