MATH 122A FINAL REVIEW HINTS

Date: 3/7/22

Name: Hogarth

1. Let $A \subset \mathbb{C}$ be an open set and $f : A \to \mathbb{C}$ an analytic function on A. Let $z_0 \in A$. Prove

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0 - \Delta z)}{2\Delta z}$$

Proof. Let $A \subset \mathbb{C}$ be an open set and $f : A \to \mathbb{C}$ an analytic function on A. Let $z_0 \in A$. Consider the limit:

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0 - \Delta z)}{2\Delta z}$$

Since f is continuous in A and z_0 is an element of A, $f(z_0)$ exists. Adding and subtracting this term to our limit above gives the following,

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0) - (f(z_0 - \Delta z) - f(z_0))}{2\Delta z} = \lim_{\Delta z \to 0} \left[\frac{f(z_0 + \Delta z) - f(z_0)}{2\Delta z} - \frac{(f(z_0 - \Delta z) - f(z_0))}{2\Delta z} \right]$$

Applying the definition of the derivative and changing the limits to the second expression we get

$$\frac{1}{2}(f'(z_0) + (f'(z_0))).$$

This is the result as claimed.

2.

$$\lim_{\Delta z \to 0} \frac{\sin(\Delta z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\sin(0 + \Delta z) - \sin(0)}{\Delta z}$$

So this question is asking the following: "what is the derivative of sin(z) at z = 0?". The answer is cos(0), which is 1. This is what we wanted to show.

- 3. Prop. Suppose f and g are analytic in a neighborhood of z_0 with zeros there of order n and k respectively. (Take the order to be 0 if the function is not 0 at z_0). Let h(z) = f(z)/g(z). Then
 - (a) if k > n, then *h* has a pole of order k n at z_0 .
 - (b) if k = n, then h has a removable singularity with nonzero limit at z_0 .
 - (c) if k < n, then *h* has a removable singularity at z_0 , and setting $h(z_0) = 0$ produces an analytic function with a zero of order n k at z_0 .

Proof: We know that there is neighborhood $D = \{z \in \mathbb{C} : |z - z_0| < r\}$ on which f and g factor as $f(z) = (z - z_0)^n \varphi(z)$ and $g(z) = (z - z_0)^k \psi(z)$ where φ and ψ are analytic and neither is ever 0 on D. The function $H(z) = \varphi(z)/\psi(z)$ is analytic and never equal to 0 on D(Why?). Thus, for z in the deleted neighborhood $U = D \setminus \{z_0\}$, we have

$$h(z) = \frac{f(z)}{g(z)} = \frac{(z - z_0)^n \varphi(z)}{(z - z_0)^k \psi(z)} = (z - z_0)^{n-k} H(z).$$

Our conclusions now follows by expanding our analytic function H(z) around z_0 .

4. Prove the Casorati-Weierstrass Theorem. Let f have an (isolated) essential singularity at z_0 and let $w \in \mathbb{C}$. Then there is a sequence z_1, z_2, z_3, \ldots in C such that $z_n \to z_0$ and $f(z_n) \to w$.

(Note) This says that a deleted nbhd of an essential singularity has a dense image.

Hint: to prove this use the same technique that an entire function has a dense image.

- 5. Example π : Determine the order of the pole of each of the following functions at the indicated singularity:
 - (a) $(\cos z)/z^2$, $z_0 = 0$

b)
$$(e^z - 1)/z^2$$
, $z_0 = 0$

(c) (z+1)/(z-1), $z_0 = 0$

Solution:

(a) The function z^2 has a zero of order 2 and $\cos 0 = 1$, so $(\cos z)/z^2$ has a pole of order 2. Alternatively,

$$\frac{\cos z}{z^2} = \frac{1}{z^2} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots \right) = \frac{1}{z^2} - \frac{1}{2!} + \frac{z^2}{4!} - \dots,$$

so again the pole is of order 2.

(b) The numerator has a zero of order 1 at 0 (why?) and the denominator a zero of order 2. The quotient thus has a simple pole. Alternatively,

$$\frac{e^{z}-1}{z^{2}} = \frac{1}{z^{2}} \left[\left(1+z+\frac{z^{2}}{2!}+\dots \right) - 1 \right] = \frac{1}{z} + \frac{1}{2!} + \frac{z}{3!} + \frac{z^{2}}{4!} + \dots \right]$$

so the pole is simple.

(c) There is no pole since the function is analytic at 0.

6. Prop: Let f have an isolated singularity at z_0 and let k be the smallest integer ≥ 0 such that

 $\lim_{z\to z_0} (z-z_0)^k f(z)$ exists. Then f(z) has a pole of order k at z_0 and, if we let $\phi(z) = (z-z_0)^k f(z)$, then ϕ can be defined uniquely at $z_0 = 0$ that ϕ is analytic at z_0 and

$$\operatorname{Res}(f;z_0) = \frac{\phi^{(k-1)}(z_0)}{(k-1)!}$$

Proof: Since $\lim_{z\to z_0} (z-z_0)^k f(z)$ exists, $\phi(z) = (z-z_0)^k f(z)$ has a removable singularity at z_0 . Thus in a neighborhood of z_0 ,

$$\phi(z) = (z - z_0)^k f(z) = b_k + b_{k-1} (z - z_0) + \dots + b_1 (z - z_0)^{k-1} + a_0 (z - z_0)^k + a_0$$

so

$$f(z) = \frac{b_k}{(z-z_0)^k} + \frac{b_{k-1}}{(z-z_0)^{k-1}} + \dots + \frac{b_1}{(z-z_0)} + a_0 + a_1(z-z_0) + \dots$$

If $b_k = 0$, then $\lim_{z \to z_0} (z - z_0)^{k-1} f(z)$ exists, which contradicts the hypothesis about k. Thus, z_0 is a pole of order k. Finally, consider the expansion for $\phi(z)$, and differentiate it k - 1 times at z_0 to obtain $\phi^{(k-1)}(z_0) = [(k-1)!]b_1$.